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Abstract 

Although the problem of decoding tree-encoded messages in communications and that 
of measuring the parameters which describe a multidimensional transducer appear  very 
different at first,  striking similarities arise upon closer scrutiny. These similarities 
a r e  most evident when each successive transducer output depends on an additional trans- 
ducer parameter. Because of these similarities and because sequential decoding has 
been so successful in decoding tree-encoded messages, a study of the application of 
sequential decoding algorithms to measurements was undertaken. 

This report analyzes a Sequential algorithm suggested by R. M. Fano, Massachusetts 
Institute of Technology, and describes its application to measurement problems. From 
the analysis, bounds to the average number of computations needed to estimate one 
parameter a r e  obtained. A bound is a l so  derived for the probability of estimating at 
least one parameter of a set incorrectly. It will become apparent that when an attempt 
is made to differentiate between parameter values that produce too small an effect on the 
output, relative to the noise, the sequential method wi l l  fail. This difficulty determines 
a limit to the precision obtainable with the sequential method. This critical level may 
be likened to the computational cutoff rate in the corresponding communication problem. 

A series of simulation experiments was performed to test the hypotheses and results 
of the theory. These experiments consisted of estimating the characteristic impedance 
values of the sections of a transmission line constructed of many short segments. This 
problem displays many of the features characteristic of geophysical layer determination. 
Although the theoretical and simulated measurement problems w e r e  not identical, the 
theoretical and experimental results agree, at least qualitatively. Thus it appears that 
further research is warranted on the application of sequential decoding to actual meas- 
urement problems. 
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SEQUENTIAL MEASUREMENT 
OF MULTIDIMENSIONAL TRANSDUCERS 

I. INTRODUCTORY REMARKS 

A. Introduction 

One of the traditional areas  of interest to the electrical engineer has been the design of 
measurement equipment. 

parameter,  trying to do SO with a minimum of interference from other quantities. 

went on, it became necessary to measure two unknowns simultaneously and the complexity of 

measurement techniques increased. 

i s  typically even larger .  
urement of a large number of parameters from data which depend on many of them simultaneously. 

In particular, 
the data required to measure one parameter may depend on some of the other parameters  whose 

values are not determined. Ideally, w e  could quantize the values of the parameters to some ac- 

ceptable degree of precision, form all possible combinations of values for the system parameters,  

and determine from the instrument's internal relations the output for each such combination. Then 

we could compare the actual output with each of these postulated outputs, and choose a s  the meas- 

urement result  that set  of system parameters which produces the most favorable comparison. 

However, if each parameter takes on D values and there  are N parameters,  the number of com- 

binations is DN, which i s  extremely large even for relatively smali  values of D and N. 

therefore desirable to  develop procedures not characterized by this exponential growth in com- 

putational load. 

Historically, he first  concentrated on measuring a single unknown 

Then as t ime 

Today, the number of unknowns in measurement problems 

We a r e  therefore forced to develop techniques applicable to the meas- 

The interpretation of the data f rom such measurements is quite complicated. 

It i s  

In this report, we consider such a problem. More specifically, we define a class of multi- 

dimensional measurement problems endowed with a so-called t r e e  structure,  and consider in 

detail an algorithm designed to determine the N unknown parameters by a number of computations 

that grows only linearly with N. 

sequentially decoding tree-encoded messages transmitted over communication channels. 

shall show how this technique can also be applied to measurements. 

The particular algorithm analyzed w a s  introduced by Fano* for 
W e  

B. Measurement Problem 

In most measurement problems, an observer attempts to assign estimated values t o  a set of 
unknown system parameters.  We assume throughout the report that the observer knows which 
parameters  characterize the system being measured and that he also knows the range of these 

parameters.  With this information, the observer w i l l  be able to construct a general model of 

the sys tem being measured and then, by estimating the unknown parameters,  he w i l l  be able t o  

I 



characterize it completely. 

some precision criterion. 

the job more difficult. 

e t e r s  with l e s s  than some specific e r r o r .  Hopefully, analysis of the particular measurement 
problem permits the observer to determine in advance whether a specified measurement tech- 

nique w i l l  satisfy the precision criterion. 

Perhaps it is required that the estimates of the parameters  satisfy 
b 

Generally, there  is noise corrupting the measurement, thereby making 
If this noise is too severe,  it may be impossible to estimate the param- 

A model of the system being measured, together with the measuring equipment, can be con- 

structed a s  in Fig. 1. 
is described by the unknown parameters,  and reacts  with it.  

output which is usually corrupted by noise before it becomes available to the observer.  

distorted output then becomes available fo r  processing, and the observer has  the option of choos- 

ing the processing technique that w i l l  provide the best possible measurement. 

The probe signal, under the observer 's  control, enters the system which 
The result of the reaction is an 

This 

1 W I T ~ * ~ k : ~ O W N  PROCESSOR 
GENERATOR PARAMFTERS h 

' - 1 -  
_ _ _  

- 1 1  

DESIGNED BY L I DESIGNED BY 
OBSERVER OBSERVER NOT UNDER OBSERVER'S CONTROL 

Fig. 1 .  Generalized meosurement equipment. 

In the cases of principal interest, the output depends on several  parameters  simultaneously. 

Assigning estimated values to  these parameters (under a maximum likelihood criterion) involves 
finding the set of parameter values which maximizes the probability of the output, conditioned 

on these values. 
a function of several variables. 

thc sequential decoding algorithms used for decoding tree-encoded messages perform such a 
hill climb in an efficient manner, the possibility of using an analogous procedure here  suggests 

itself. 

Since several  parameters determine the output, one must find the maximum of 

Since This search is known a s  a multidimensional "hill climb." 

In the remainder of this report, we restr ic t  our attention to additive noise, since it is the 
On the basis of this assumption, type most frequently encountered in measurement problems. 

we adopt the following terminology a s  illustrated in Fig. 1. 
ponents to represent the probe signal; let h' be a similar vector describing the unknown param- 
eters ;  let is applied; and 

let y' be the output available to the observer as a noisy version of 3. 
the noise, the additive noise assumption implies 

Let be a vector? with enough com- 

be the output of the system being measured when the probe signal 
If n' is a vector describing 

y ' = z ' + i i  . 

C. Communication Problem 

Since the motivation for the application of a sequential algorithm to measurements arose 
f rom certain similarities between measurement prpblems and communication problems, we shall 

t In its most general sense, a vector con be regarded as an ordered set of quantities. Thus a vector of sample 
values can be used to represent a time signal and a vector of arbitrary numbers can be used to represent a set of 
parameters. 
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discuss the communication problem briefly. 

Fig. 2. 
noisy channel. 

actly a s  transmitted, but is corrupted by an unwanted effect imposed upon it by the channel. Thus 
e r r o r s  a r e  made in conveying the source message to  the user .  

The general communication system is shown in 
A message source is generating messages that must be transmitted to  a user  over a 

4 

Because of the noise, the transmitted signal does not a r r ive  at the receiver ex- 

SOURCE 

- - ENCODER CHANNEL d DECODER ---C USER 

- 
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alternate algorithmto sequentially decode tree-encoded messages.  This method could be analyzed 

more completely than that of Wozencraft, and was shown to  require an average number of compu- 
tations per digit that is independent of constraint length6 These sequential decoding techniques 

will be described in more detail later.  

, 

D. Measurements Vs  Communications 

If the measurement problem discussed in Sec. I-B. is compared with the communication 

problem, some striking similari t ies appear. 

with an unknown vector quantity to produce a noise-free data vector. In both cases,  there  is a 
noise effect which prevents the user  f rom observing the data vector directly and thereby deter- 

In both problems, a known vector quantityt reacts  

mining uniquely and at once the values of the set  of unknowns. In both instances, he can perform 

an exhaustive search to find the best estimate for these quantities; however, a s  previously dis- 

cussed, this technique is unattractive. The only r ea l  difference l ies in the form of the reaction 

between the known and the unknown vectors.  
The transformation from the message symbols to the transmitted symbols carr ied out in the 

encoder for communications, and the transformation f rom the probe signal to the noise-free data 

vector in the measurement problem, may both be represented by the general  transformation 

T(g,?). 
parameters  and h’ the sequence of message symbols; in the representation of the system under- 
going measurement, let S’ represent the probe signal and h the unknown parameters.  

both communications and measurements, 

determine <. 
cation problems. 

+ 
In the representation of the communications encoder, let s be the vector of encoding 

- 
Then in 

and T are known to the use r  and it is his task to 

Thus an additional similarity exists between the measurement and the communi- 

However, it is at this point that a subtle difference ar ises .  For in communications, the 
choice of T is at the disposal of the user,  whereas in measurements, T, although known, is 

specified by the form of the system being measured. 
lem analogous to the general  measurement problem is the study of a particular encoding tech- 

nique where the objective of the study is to develop an efficient decoding procedure and to a s -  

certain how well this procedure will operate. 

Thus the particular communication prob- 

Despite this difference, it i s  clear that the number of similari t ies is sufficiently large to  

suggest that an efficient communication technique might apply to measurement problems a s  well. 

More specifically, we have indicated above that the sequential decoding technique has permitted 

the multidimensional search,  required to decode tree-encoded messages in communications, to 

be completed with a reasonable number of computations. We have also indicated that a similar 

multidimensional search occurs in interpreting measurement data. 

a sequential method in measurement problems ar ises .  

Thus the possibility of using 

E. Objectives 

In this report, w e  investigate the possibility of using a sequential processing method for 
measurements. Firs t ,  we discuss the class of measurement problems which appear amenable 
to the application of a sequential method. 
which we can compare hypothesized noise-free output sequences (?? in Fig. 1 )  with actual data 

vectors (7 in Fig. 1);  we shall define a t r e e  structure which is required for the sequential method 

In this connection, w e  shall discuss measures by 

t Again we refer to a vector in its most general sense. 
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to  apply to  a measurement problem; we shall suggest a further requirement, called the differ- 

entia1 bias  assumption, that guarantees the usefulness of the sequential method; and we shall 
introduce examples which seem to  satisfy the above two requirements.  

we analyze the Fano technique in detail. W e  show that the average number of computations to  
decode one branch of the t r ee  is bounded by a constant. 

bility of incorrectly estimating a parameter decreases exponentially with the number of available 

output samples  dependent upon that parameter.  Fo r  the case of white, Gaussian noise, graphs 
wi l l  be presented which show how the decoder’s operation depends on the various quantities which 

a r e  used to  describe the decoder and on the noise level. 
t r y  to  differentiate between parameter  values that produce too small  an effect on the output, re la-  

tive to the noise, the sequential method wi l l  fail. Thus there is a parameter  analogous to  R comp’ 
the ra te  above which the sequential method fails in communications. 

4 

4 After describing the methods suggested by Wozencraft and Fano’ for sequential decoding, 

We also demonstrate that the proba- 

It will become apparent that when we 

Finally, the resul ts  of a simulation of the sequential method used on a particular simplified 
measurement problem will be presented. 

s imi la r  to  the calculated behavior, thereby lending support to the assumptions made in analyzing 

the sequential method a s  applied to  the  measurement problem. The simulation resul ts  a r e  for 
a model of the geophysical exploration problem, and a c learer  understanding of the difficulties 

inherent in this problem came about through the simulation. 

ularly in connection with quantizing the unknown parameters,  will be presented. 

suggestions for future research  will be made. 

It will be seen that the simulated behavior is very 

Some thoughts in this a rea ,  partic- 
Finally, some 

II. APPLICATION OF SEQUENTIAL METHOD TO MEASUREMENTS 

A. Introduction 

In this  section, w e  consider specifically the application of a sequential method to measure- 

ments. 

to the data. 

w i l l  be applicable. 
applied. 

F i r s t ,  we discuss metr ics  which must be used to define precisely the f i t  of a hypothesis 

Then we set  forth the two requirements sufficient to  prove that the Fano algorithm 

Next, we consider two examples toward which the sequential method may be 

Finally, we describe the Wozencraft and Fano algorithms. 

B. Metrics 

In Sec. I-B, we considered estimating a set of parameters  <, by comparing the output vector 
To ca r ry  out an algorithm, * 

z, resulting from a particular ;* vector, to the received y’ vector. 
this notion must be made precise. 

metric? which specifies the degree to  which a fit i s  made. 

We consequently define a quantity, hereafter denoted a 

Before specifying the particular metric that w i l l  be considered in this report, w e  recal l  the 

Suppose there  is difference between maximum likelihood and maximum a posteriori estimation. 

a se t  of alternatives {ai}, each occurring with the a pr ior i  probability p(a.). 
choose which alternative produced the datum d. 
each alternative, conditional on the datum p(a./d), and choose as the estimate that alternative 

which maximized this function. 

p(ai/d) is the - a posteriori probability of the alternatives. 

f rom Bayes rule, 

- 
W e  a r e  trying to  -- 

Firs t ,  w e  could calculate the probability of 

This is referred to a s  maximum a poster ior i  estimation, since - 
We note that the calculation is made 

7 

. 
1 

tThe term metric i s  convenient but not strictly proper, since we do not require these metrics to have the mathe- 
matical properties of reflexivity, symmetry, and triangle inequality satisfaction. 
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p(d I ai)  phi) 

c P(d I ai) p(ai) 
p(ai I d) = 

i 

Thus the a priori probabilities a r e  used to carry out the - a posteriori  estimation method. 

c a r e  not to introduce bias into the metric by the use of uncertain values for the a pr ior i  prob- 

abilities. 

-_._ 

Generally, however, the a priori  probabilities a r e  not known explicitly. We must then take -- 

-- 
The maximum likelihood approach should therefore be considered. 

A maximum likelihood estimate is that value of the unknown parameter which maximizes 

the probability p(d/ai) of the datum, conditional on the parameter value. 

hood method has the benefit of being independent of the -- a pr ior i  knowledge, and thus i s  more 

convenient to implement. 

The maximum likeli- 

It is important to note that the maximum likelihood method is equiva- 

lent to the a posteriori probability method if the -- a priori  probabilities a r e  equal. - 
Discussions of the appropriateness of each technique a r e  common in the statist ical  l i tera-  - 
.I ture  

if one’s ability to perform a measurement depended critically on the -- a prior i  probabilities, then 

one would have little confidence in the result .  
Because we seldom have reliable a pr ior i  information available in a measurement problem, 

and for the other reasons cited above, we restr ic t  ourselves in this report  to a maximum likeli- 

hood approach. 
the probability density function of the noise vector? It is also desirable to define the metric in 
such a way that independent contributions to the total a r e  additive. 

t ies  is proportional to logp+(f/Z).  
distributed, this becomes 

and it could serve little purpose to continue them here.  Suffice it to say, however, that 

-- 

Consequently, the decoding metric should be a monotone function of p,(y//z‘). 
n 

A metric with these proper- 
If the noise samples a r e  indeed independent and identically 

n 

On correct paths, the expected value of this metric i s  

1 p;(y’I Z) logp+(y’I z) d(y’I T) = -H(g )  
n 

where H($) is the entropy of the noise vector. 

We shall  see in the discussion of the Fano algorithm that the metric should increase on 

correct paths, while it should decrease on all others. 

will be chosen to be 
Therefore, the metric for that algorithm 

k 
M~ = 2 R t 1np (y.12.)  

n J  J 
j=1 

t The subscripr i? specifies the noise probability density function. 



where d is the incremental contribution to the metric due to  the noise and R i s  a constant bias 
d J 

to be chosen later. If R exceeds the noise entropy, this metr ic  will, on the average, be com- 
posed of positive increments on the incorrect path. 

is not too great, it will be shown that the metric will, on the average, decrease on all incorrect 
paths. 

If R is not chosen too large,  and i f  the noise 

C. Tree Structures 

In the coupled parameter  measurement problem, the observer has available the noisy data 

vector y’ and the probe signal 

This qualitative description is to  be made explicit through the estimation of the unknown param- 

eters designated by h’. 

for all N components of h’ and comparing the resultant 

y. 
choose the beet fit t o  the data vector 7. 
unrealistic number of attempts for any sizable number of h’ components. 

as w e l l  as  some qualitative information about their  relationship. 

A general  estimation procedure for  this complex problem might consist of guessing values 

vector with the received data vector 
+ Then by varying the h’ components until all possible vectors a r e  tested, the observer can 

A s  mentioned in the introduction, this would require an 

Occasionally, it may be possible to  find the best fit by guessing an h’ vector and then ad- 

justing the guess, a component at a time, until the fit cannot be improved. 

dure has the pitfall of local maxima at which a poor fit gets poorer, no matter how the h’ com- 

ponents are individually varied. 

“plateau” problem whereby, for most guesses, the adjustment of any h’ parameter gives a neg- 
ligible change in the fit.  

However, this proce- 

Another difficulty ar is ing with this method is the so-called 

In the class  of problems to  which the sequential algorithm applies, there  is a s t ructure  known 

a s  a tree s t ructure  which permits  these problems to  be circumvented and is defined a s  follows. 

Suppose that each h’ is quantized to  D levels s o  that there  a r e  D 

suppose the components of 

N possible h’ vectors. Also 

and h’ can be ordered so that 

-+ z. = f.(hi, h2, .  . . ,hi ,  s ) . 
1 1  

Then a t r e e  can be constructed having nodes which represent  the set of all h’ vectors having a 

common initial part. In this  t ree ,  a node at depth i represents  all h’ vectors identical in the 

f i r s t  i components. Since z. is dependent only on the f i r s t  i h components, a one-to-one cor-  
i i 

respondence exists between the D nodes at depth i and the D se ts  of 

consists of the DN-i vectors with a common prefix. 

- 
1 

vectors where each set 

Once this tree s t ructure  is assumed, it becomes possible to perform the hill climb on an 

incremental  basis. 
this value for hi ,  consider h2 using yz for  comparison as well as  y i ,  etc. 

correct, these comparisons will continue to be satisfactory. 

one stage due to  a la rge  noise sample, and i f  the effect of this incorrect hypothesis is to make 
the succeeding hypothesized 

That is, one can estimate h i  on the basis of y i ,  and then, conditional on 

However, i f  an e r r o r  occurs at 

If the estimates a r e  

components different f rom the true components, the e r r o r  will 

7 



become apparent at la ter  stages. 

parameters  should be halted, and the processor should concentrate instead on correcting the er-  

r o r .  
these estimates and will be discussed la ter  in this section. 

of practical  measurement interest which possess the t r e e  s t ructure  defined above. 

When such evidence appears,  the estimation of additional 

The sequential decoding algorithms a r e  formalized procedures for  making and correcting 

F i r s t ,  however, we present examples 

D. Example I. Impulse Response of Discrete Linear Filter 

A s  a relatively simple example illustrating the use of a sequential measurement procedure, 

we consider a linear, time-invariant, t ime- and amplitude-discrete fi l ter .  Because of the l inear 
aspect of this problem, l inear regression techniques can be used to estimate the components of 
the fi l ter  in a much less complex manner than the sequential one. However, the l inear fi l ter  is 

simple and familiar enough to be described easily. 

technique is briefly discussed in Appendix B. 

F o r  completeness, the l inear regression 

It is assumed that the amplitude of the fi l ter  impulse response is quantized to  one bit (two 

levels) and that a necessary and sufficient description of the fi l ter  is given by i ts  response to an 

input pulse of unit amplitude. In addition, the input signal amplitude is also quantized to one bit 

and is t ime discrete in synchronism with the fi l ter  response. Gaussian noise samples are added 

to the f i l t e r  output and the result is transmitted to  the user,  whose task is to determine the filter 

response given the input signal and the noisy output. 
Pa r t  of the user 's  problem is to determine a satisfactory or perhaps even optimum (in some 

sense) input signal subject to some total energy constraint. 

is a sequence of unit pulses spaced sufficiently far apart  to guarantee that the fi l ter  response has  

ended before a second response due to a second input pulse has  begun. With such an input, since 

the symbols a r e  independently disturbed by the noise, the only reasonable strategy is to deter-  

mine the fi l ter  response components independently on the basis  of the output components influenced 

by them. 
since there  is no output component influenced by more than one component of the filter response.  

However, because he  may want to put energy into the fi l ter  more rapidly than this procedure 

Of course,  the most obvious input 

No sequential procedure suggests itself he re  and indeed none can logically be proposed, 

allows under a peak-power constraint, the u s e r  may prefer to use a more complex input of shorter  

total duration than is permitted, if outputs are not to overlap. 

quential procedure occurs and it is this procedure which w i l l  be discussed in the remainder of 
this section. 

In this instance, a natural se- 

-+ 
The system under consideration consists of an input signal g, a filter response h ,  an un- 

+ disturbed fi l ter  output 2, a noise sequence n, and a system output F. 
h take on the values ( + I )  and ( - I ) ,  the components of C? take on integral values, and 
take on values in the continuum. 

b e  M units and that of is N units. 

The components of and 
+ 

and y' 
For simplicity, we assume that the duration of is known to  

Before describing the sequential procedure, the ideal measurement technique will be dis- 

cussed. 

fore  be plotted as a vector in an  M t N - 1 dimensional vector space. 

also be plotted in this same space and, if the noise level is not very high, will be a point not far 

f r o m  ??. 
actual f i l ter  response. 

the 2M 

each one of them. 

The undisturbed output C? is an M t N - 1 component t ime-discrete signal and can there-  

The noisy output y' can 

NOW it is the use r ' s  task to determine from 7 which of the 2M possible vectors is the 

Since the input signal g is known, the use r  could theoretically compute 
vectors corresponding to the 2M possible h' vectors by convolving the known with 

Then the maximum likelihood f i l t e r  response is that corresponding to the 

8 



closest t o  the output signal F. 
space; optimally, s should be choosen to minimize the probability of confusion between them. 

Practically, however, this method of measurement is not feasible, since the number of compu- 
tations ZN grow exponentially with the response duration. 

The effect of choosing is to move the 2M i? vectors in the output - 

W e  immediately note the similarity between this ideal procedure and that existing for  the 

decoding of convolutionally encoded messages.  

tical because of the exponential growth in the number of computations with constraint length. 

The sequential decoding procedure is designed to avoid this exponential growth and it would not 

seem surpris ing that it could be applied to  obtain the same  advantage in this measurement 

problem. 

In that case, too, the ideal method is imprac- 

The key to  the operation of a sequential procedure is the so-called tree s t ructure .  In the 

measurement problem the s t ructure  a r i s e s  a s  follows. 

f i l t e r  is given by the well-known convolution integral (summation is due to  the synchronous t ime- 

discrete  input and filter response). 

The input-output relationship for  the 

1 

, 

z .  = 2 hisj-i . 
3 

i= 0 

The indexing convention implies that only positive indices a re  meaningful. Therefore,  we 

may w r i t e  the first few equations a s  

z = h s  
0 0 0  

z1 = h s + hiso o i  
z2 = h s + h s + h2so , etc. 0 2  1 1  

Consequently, the two hypotheses for ho lead to two hypotheses for zo. 
for ho, the  two hypotheses for hi lead to  two hypotheses for z i ,  etc. 
structed by considering each path through the t ree  as a separate  filter response and calculating 

for each branch the undisturbed filter output that would occur for the corresponding f i l ter  r e -  

sponse. 

Given each hypothesis 

The t r e e  i s  therefore con- 

This  is illustrated in Fig. 3.  

After M postulates have been made, the entire f i l ter  response i s  determined. However, 

N - i components of 

no choice remains,  these components do contain information about the filter response compo- 

nents; therefore, they should be used in the measurement procedure. 

be NT components corresponding to the las t  branch of the t ree .  

ponents the remainder set. 

have not been comparedwith the corresponding components of 7. Although 

Consequently, there  will 

W e  shall call this se t  of com- 

In the next section, we discuss a problem toward which the sequential procedure might 

real is t ic  ally be applied, 

E. Example II. Reflection Study of Geophysical Layers 

In the simplified linear f i l ter  problem discussed in the preceding section, the applicability 

of the sequential measurement technique came about through the dispersive nature of the filter. 

The first M successive output pulses each depend on a filter response component that had not 
affected the previous output pulses. Thus a t ree  s t ructure  a rose  and the sequential procedure 

became feasible. However, because the outputs a r e  linear functions of the unknown parameter,  

9 



z = o  z = - 1  13-22-596”l 
z l = O  h 2 = + l  
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h , = + l  = + 2  2 = - 1  

z 1 = - 2  h 2 = + 1  
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= o  2 . - 1  Fig. 3. Tree structure for a 3-component filter 

2 , = + 2  h p = + l  and a specific 2-component input. 
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Fig. 4. Reflections from layered structures. 

Note: The pulses are labeled in accordance 
with the path they followed. 

( a )  

BREAK - t V 
n - 

PULSE A B C 

(b) 
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. 
the sequential method is inferior t o  a linear regression technique which is much less complex 

to  instrument. 
Of more practical interest is a problem in which the outputs a r e  not linear fuctions of the 

L 

unknown parameters ,  and we choose the geophysical exploration problem a s  an example for this 
discussion. 
telephone line measurements by pulsed inputs. The geophysical problem was chosen partly be- 

cause of the readiness with which the sequential technique could be adopted. 
that all the  information available to  the observer is not utilized in geophysical work because of 

a lack of suitable data-processing techniques. 

Other examples might include radar investigation of targets  with range extent and 

However, it appears 

For about fifty years ,  artificially generated seismic waves have been used in the investiga- 

tion of layered s t ructures  beneath the ear th 's  surface. 

car r ied  out exclusively, improvements in technique since World War I1 have brought about a 

broad changeover to  reflection methods. Indeed, in many a reas  of geological exploration, such 

a s  in petroleum prospecting, the change is almost complete. 

Although initially refraction studies were 

Generally speaking, the ear th ' s  s t ructure  is one of multiple layers  of varying mater ia ls  and 

A seismic wave, initiated by the detonation of several  pounds of explo- of varying thicknesses. 

sive, t rave ls  downward through the ear th 's  crust and is reflected, in par t ,  at each boundary. 
Since the initial blast is pulse-like, pulses from the succeeding layers  w i l l  a r r ive  at the surface 

at l a te r  t imes which depend specifically on the propagating media, the location of the layers ,  and 

the location of the observation point. This is illustrated in Fig. 4(a-b). By observing the arr ival  
t imes  and amplitudes of these pulses, it is possible to deduce the layered s t ructure  of the 

subterrain. 
The seismic waves propagate through the layers in a manner governed by the wave equation 

for  an acoustic wave in an elast ic  medium. 

the medium, and at a boundary they a r e  partially reflected and partially transmitted. It does 
not seem appropriate t o  discuss the pertinent equations in great detail, since there  a r e  many 

formal presentations available8 W e  may say, however, that the equations and their  solution a r e  
perfectly analogous to  those obtained in the study of electromagnetic plane waves traveling through 

dielectric media. 

These waves t ravel  with a velocity that depends on 

In particular, we can define a characteristic impedance of a medium Zo, which is related to  

the velocity of propagation v and the medium's density p by 

zo = pv 

If a pulse of amplitude A propagating in a medium with character is t ic  impedance Zoi s t r ikes  

perpendicularly to  the boundary of a second medium with characteristic impedance Zo2, there  

will be a reflected pulse of amplitude 

z02-z0i  . A 
z02 + zo1 

and a transmitted pulse of amplitude 

2z02 . * 
z02 + z o l  

On the basis  of these amplitudes, it is possible to calculate the ent i re  response of a given s t ruc-  

tu re  to  an initial wave in t e rms  of its amplitude and the various acoustic impedances. Note that 



multiple reflections may simultaneously a r r ive  at the observer  and these must be accounted fo r  

in the calculation. 

In the geophysical problem, however, the acoustic impedances are the objective of the meas- 

urement. 

the many geophysical parameters .  

simplifies the processing and makes a sequential technique the natural  one. 

At some time after the blast, the observed signal will be a very complex function of 

However, we shall  soon see that there  is a t r e e  s t ructure  that 

Note, f irst ,  that the f i r s t  response to the observer is a reflection f r o m  the f i r s t  boundary 

and that i ts  t ime of arr ival  indicates the thickness of the f i r s t  layer while the amplitude, re la-  

tive to the amplitude of the initial disturbance, permits the acoustic impedance of the second 

layer (assuming that of the f i r s t  is known) to  be determined. 

second boundary and gives information of the second l aye r ' s  thickness and the third 's  impedance. 
Thus the layers  may be considered sequentially and, a s  the measurement process continues, the 

effects of earlier layers  may be removed from later  data points. 

model which was simulated as a basis  for testing the sequential measurement technique? Con- 

sider a transmission line of L sections each of the same length. 

tion be one of the two quantities ZA o r  ZB. 

observer disturbed by Gaussian white noise of variance u . 
determine the {Zon}. In doing so, he may choose any input that best satisfies his objective. 

relative to the geophysical exploration problem are in order .  When studying the data processing 

methods in this area,  one i s  struck by the dearth of precise techniques. Indeed, long-term am- 

plitude information is being generally discarded in favor of automatic volume control which per-  
mits a constant amplitude on the seismograph record without a need to calibrate. 

argument for this approach has been that the amplitude of the tes t  pulse generated by the blast 

is too variable. Only recently has  the usefulness of the amplitude ratios been noted." In addi- 

tion, the majority of the seismographic data gathered in search of petroleum has been reduced 

by eye. 

could result in the waste of an expensive seismic survey. 

The next response is from the 

F rom the above description of the seismic reflection problem, we can abstract  a simplified 

Let the impedance of each sec -  
Let the reflected output of the line be available to the 

2 Then the observer 's  objective is to 

Before proceeding to a more detailed description of sequential decoding, a few more remarks  

The chief 

Consequently, the skill of the reducer is of prime importance and any oversight by him 

Thus there i s  a strong need for automatic, precise  data reduction techniques. Perhaps the 

sequential measurement technique will provide the basis  for a practical, efficient method to 

process data from the seismic exploration of layered geophysical structures.  

F. 

In the preceding sections, we discussed sequential algorithms in general and indicated some 

Sequential Decoding (According to Wozencraft) 

typical problems to  which they may apply. 
have received the most attention. 

r i thm similar  to that of Fano, we include f o r  completeness a brief description of the sequential 
decoding technique introduced by Wozencraft4 and generalized by Reiffen. 

to the y' vector that has been received. 
a metr ic  which is additive and increases with the s ize  of the noise samples according to 

logp+(y'/z) where p+(F/z)  is the probability density function of the noise vector. Suppose f i r s t  

that in t e r m s  of this quantity, one considers "radii" of constant metr ic  around the received vec- 

t o r  y. This question could 

W e  next describe in detail the two procedures which 
Although the bulk of this work will be concerned with an algo- 

5 

The objective in the measurement problem is to determine which of the vectors is "closest" 

The notion of closeness can be made explicit by defining 

n n 

Then one may ask if  any of the vectors l i e s  within a radius r1 of 7. 

12 
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-c 
be answered by postulating the first j components of h, computing the portion of the 

determined by this subset of h components, and determining the portion of the total metric cal- 
culable on the basis  of the partial hypothesis. Certainly, if  the partial metric D. exceeds r l ,  
the total metr ic  will also. 

i f  r1 i s  varied a s  the depth into the t r ee  increases. Therefore, those ?? vectors very distant 
f rom the received y' w i l l  be eliminated from consideration before many of the components a re  
t r ied.  z vectors a r e  very different from y'. the number of computations 

w i l l  be greatly reduced and it is this reduction that permits,  on the average, a linear ra ther  than 
exponential growth in computation with N. 

of h' is postulated. 

vector 
-+ 

J 
We w i l l  see  la ter  that the average number of computations is reduced 

M -  Since most of the 2 

If the D. does not exceed ri, then another component 

In that case, the procedure suggests 

repeating the procedure for r2 > rl.  Eventually, the sphere w i l l  be enlarged sufficiently to  in- 

clude one of the ?? vectors and this one is considered the undisturbed filter output, and the cor- 

responding filter response becomes the measurement result. It may happen that more than one 

z vector falls within an increased value of the radius and a s  a resul t  the wrong response could be  

determined. 

that whenever it does happen, an e r r o r  results. 

J 

Suppose that none of the vectors a r e  within r l  of F. 

- 
This event i s  one of the possibilities for  e r r o r  and it will be assumed conservatively 

Clearly, the number of computations can be decreased, if  the radi i  considered above a r e  
-c 

changed a s  the procedure successively postulates more h components. 
a cumulative metric will increase very rapidly for small  values of j and then very slowly for 

la rger  values in order  that the total metric remains below rk' a set  of cr i ter ion functions r (j) 

should be used which increase monotonically. 

causing any short path with rapidly increasing cumulative metric to be dropped from further con- 
sideration before the partial distance becomes equal to  the maximum allowable distance. 

course, the correct  path may have a metric which first increases  rapidly and then much more 

slowly. Although such a path may be rejected under this procedure for the kth criterion function, 
rk(j) ,  it will prove to be acceptable for some other criterion function rkl (j), k' > k. 

branches at  a node have been bounded, but the number for accepting the correct  branch have not. 

The analysis of the Fano procedure permits a complete bound to  the number of computations. 

Since it is unlikely that 

k 
This reduces the number of computations by 

Of 

In the analysis of this technique, the number of computations for  rejecting the incorrect 

G .  

To determine the 

Sequential Decoding (According to F'ano) 

vector closest to  the received 7 vector, another related procedure, 

s imilar  to that developed by Fano' for sequential decoding, can also be used. In this procedure, 

the paths through the encoding t r e e  a r e  also tested for cumulative distance, but the thresholding 

strategy differs greatly. 

correct  path and decrease when the incorrect path is followed. 

ogous procedure is to  postulate successive branches, to compute the total measure and then to  

compare this with a threshold. 

considered unacceptable and other branches from the previous node a r e  t r ied  until an  acceptable 

branch is found stemming f rom it. 

A metric is used which tends to  increase when the decoder is on the 

With such a measure,  the anal- 

If the total measure c rosses  under the threshold, the branch is 

If this  cannot be done, the procedure is to  back off another node and to  tes t  branches stemming 

from it against a threshold that is just satisfactory. 

that the variation on the correct  path w i l l  eventually put the total measure on the acceptable s ide 

When the metr ic  is chosen in such a way 
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of the threshold, this search will eventually be successful. 

old, the threshold is adjusted by a multiple of a basic increment to just keep the current total 

metric satisfactory. 
threshold serves  to minimize the number of computations with a small  l o s s  in e r r o r  exponent. 

If the total does not c ros s  the thresh- 

This practice of following the total metr ic  a s  closely a s  possible with the 

A s  indicated in Sec. 11-B, the Fano algorithm requires  a metric that increases on the correct  

path and decreases on incorrect ones. We have seen that the metric for n observation intervals 

n 

M n =  nR t 2 di 
i= 1 

where di is the incremental contribution and R is a constant bias, has the desired properties.  

The decoder w i l l  consider branches stemming f rom a node in o rde r  of decreasing metric.  
It w i l l  record previous decisions by means of a vector variable i ( l ) ,  i(2),  . . . , i(n) where i(n) is 

the order  number of the branch selected by the decoder at depth n in the t r ee .  
description of the decoder position requires  the use of the f i r s t  j vector components to deter- 

mine the position at depth j.  

Such a vector 

The algorithm will best be described in connection with the flow chart  of Fig. 5. Every t ime 

a branch of the t ree  is tested, the decoder is situated at the point marked "start." 

crement to the metric corresponding to the branch under test  is computed and added to the cumu- 

lative metric Mn. 
T ,  the branch is deemed satisfactory to the decoder which then follows loop A and proceeds to 

test  a new branch beyond the one just tested. When the successful branch is under test  for the 

first  time, the threshold is raised until it obtains i t s  maximum permissible value below Mntl. 

If the branch has been tested previously, the threshold should remain at the original level. 

F i r s t  the in- 

The quantity Mn+* is then compared with the current threshold T .  If Mn+l >, 

The remainder of the flow chart deals with unsatisfactory branches. Since the branches 

stemming from a node a r e  tested in o rde r  of decreasing metric,  the failure of one branch imme- 
diately implies the failure of all branches at  that node for the present threshold. Therefore,  the 

decoder must return to a previous node to seek a satisfactory branch. Before testing, if branches 

( Mn+, :T+To F : O  - T+To-T 

START I 

t 
M,: T +To 

LOOP c 

T-T,-T 
LOOP B 

0-F 

Fig. 5. Flow chart of the sequential decoding procedure (A -+ B indicates: 
set B equal to A). 
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f rom that node a r e  satisfactory, it is necessary to tes t  the cumulative metr ic  at the node itself. 

If M 
maining above the new threshold setting. 

if they lead to  paths remaining above T. 

< T, the decoder lowers the threshold by To and then searches to see  i f  there  is a path re -  
If Mn >, T, other less  likely branches a r e  tested to see  

The decoder must take ca re  not to raise the threshold on a path that has already been tested. 

The procedure operates by testing thresholds i n  order  of decreasing value, and i f  one proves un- 
satisfactory, no higher threshold should be used until virgin te r r i to ry  is reached. 

Fig. 5 that F = 0 whenever a new path i s  followed and that F = i whenever one is being retraced. 

F is set  to  one whenever a path falls below a threshold TI. 

TI - T 
exceeds T '  - To but is below TI. 

If the decoder does not lower the threshold, but instead backs up to an ear l ie r  node with severa l  
paths above TI, it w i l l  search a n e w  path only i f  one remains below T I  + To. Otherwise, the de- 
coder would have raised the threshold to  TI + T when it reached this node for  the first  t ime.  

n 

W e  see in 

If the threshold is then lowered to 
the decoder will continue to  re t race  branches already investigated until it finds one that 

0' 
This is the first new branch to  be tested and F is reset to zero. 

0 
The operation of the algorithm w i l l  be best understood by the reader  if he follows i ts  opera- 

Figure 6 is a sequence of display photographs resulting from the tion in typical cases in detail. 

simulation of the decoder operating on a model of a geophysical exploration problem of the type 

discussed in Sec. 11-E. 

the decoder 's  operation. 

before the threshold is raised for this newly accepted branch. 

These photographs illustrate the more important cases  that occur during 

This  display follows the acceptance of a choice in loop A of the decoder 

H. Differential Bias Assumption 

In Sec. I-D, we noted a basic difference in the freedom available in communications for in- 

troducing redundancy and that available in measurements. 

freedom to design the encoder in a way that will make the set of possible transmitted sequences 

a s  different among themselves a s  possible. 
a r e  chosen to optimize the encoder 's  performance. 

based on the average behavior over the ensemble of parameter values. 
that there  is at least  one se t  of parameters  which would provide this average behavior. 

In communications, there  is the 

Once such an encoder is chosen, certain parameters  

The analysis of this performance is usually 
We a r e  thus guaranteed 

In measurements,  however, this possibility does not exist. Although we have the freedom 

to choose the probe signal, the set  of possible transmitted sequences is highly constrained by 
the device being measured. Consequently, it could well happen that the various hypothesized 

parameter  vectors produce almost identical sequences of noise-free outputs, no matter how the 
probe signal is chosen. 
would be difficult. 

In such a case, measurements that would distinguish among the vectors 

The notion of coding in communications is different f rom that in measurements. In both 

a reas ,  coding is essential, since there  must be some redundancy in the noise-free data to  indi- 

cate to the decoder when it has  e r red .  

decoder to  a node in the tree at which every hypothesized output differs f rom the correct  output 
for that t r e e  depth, the decoder will never be able to  ascertain i ts  e r r o r .  

always be some incorrect path through the t r ee  identical in its output sequence to  the correct  

output sequence. 
the ra te  and picking the code words at each node independently and at random. 

the characteristic must be provided by the device under measurement itself. 

Un les s  an incorrect hypothesis at some point leads the 

Otherwise there  would 

In communications, this characteristic of the t r e e  code is obtained by reducing 
In measurements,  
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- 2 2 - 5 4 3 9  ( 0 - d )  

1 .  Decoder i s  in initial state. 2. 
are computed. 
i s  chosen. 

Metric values for alternatives a t  first node 
Path corresponding to highest 

3. Repeated a t  node 2. Threshold has been 4. At node B, both metric increments 
raised. are negative, but one remains above 

threshold. 

Fig. 6.  Oscillographic simulation output. 



5. M e t r i c  increments  a t  node  4 w e r e  computed; 
bo th  caused  met r ic  t o  fall below threshold. De- 
c o d e r  then  returned t o  node  3, found t h a t  untested 
branch  fe l l  below threshold, a n d  then  lowered 
threshold. 

1 - 2 2 - 5 4 4 0  lo-d) 1 

6. With lowered threshold, d e c o d e r  re t races .  

7. Branch a t  node  4 i s  successsfully chosen.  8. Branch at n o d e  5 i s  chosen.  

Fig. 6. Continued.  
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9. Branch a t  node 6 i s  chosen. Threshold 10. Branch a t  node 7 i s  chosen. Threshold 

i s  raised. i s  raised. 

1 1 .  Branch a t  node 8 i s  chosen. Threshold 
i s  raised. Dropping signal-to-noise ratio i s  
becoming apparent. 

12. Branch a t  node 9 i s  chosen. 

Fig. 6. Continued. 
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13. Branch a t  node 10 i s  chosen. This branch 14. Bmnch at node 11 i s  chosen, Threshold 
i s  incorrect. Threshold i s  raised. i s  raised. Although on incorrect path, metric 

i s  increasing. 

15. Alternatives at node 12 are computed. 
Both cause metric to fa l l  below threshold. 

16. Decoder returns to node 11, where i t  tries 
untested branch with highest metric increment. 

Fig. 6. Continued. 
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17. Alternative metric values for this choice 18. At  node 12, i t  finds that both alternatives 
are computed, both falling below threshold. Decoder returns to node 1 1 .  
Again decoder returns to node 1 1  where i t  
finds no more untested branches. I t  returns 
to node 10, finds metric below threshold, 
lowers it, and then tries branch from node 
1 1  with highest metric value. 

fa l l  below threshold. 

19. 
with highest metric increment. 

Decoder tries untested branch at node 1 1  20. At node 12, both alternatives fel l  below 
threshold. Returning to node 1 1  , decoder found 
no more untested branches and therefore lowered 
threshold. Then i t  returned to node 10 to begin 
search with this new threshold value. 

Fig. 6. Continued. 
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21. Search moves to node 1 1. Threshold 22. Branch a t  node 12 i s  chosen. Threshold 
remains fixed. remains fixed. 

23. Both alternatives fe l l  below threshold 24. Both a1 ternatives fel I below threshold. 
causing untested (with current threshold) No untested branches remained at node 11. 
branch with highest metric increment to be Decoder then returned to try untested branch 
checked. a t  node 10 with highest metric increment. 

This i s  correct path at last. 

Fig. 6. Continued. 
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25. Branch a t  node 1 1  i s  chosen. 26. Branch a t  node 12 i s  chosen. 

27. Btunch a t  node 12 fell below threshold 28. Branch a t  node 13 is chosen. Decoder 
which was raised just after display 26. i s  on right track. 
Threshold was lowered again. 

Fig. 6. Continued. 



The constraints imposed by the system under measurement become important in another 

way also. 
s ider  the behavior of the metr ic  along incorrect paths a s  well a s  i t s  behavior on correct  paths. 

Since the metr ic  on the correct  path is a function only of the noise samples,  i t s  components a r e  
independent. 

noise samples,  but also of the particular incorrect 

being considered. 
account these 2 values. 

every incorrect  path would have to  be considered separately. 

When analyzing the operation of the sequential algorithm, it will be necessary to  con- 

However, the metr ic  on the various incorrect paths is a function not only of the 

values which occur along the incorrect path 
Thus, in the analysis of the metric on the incorrect path, we must take into 

Clearly, such a procedure would be cumbersome since, in general, 

In the analysis of sequential decoding a s  applied to  communications, this problem is avoided 

by a mathematical ar t i f ice  known a s  ensemble averaging. Instead of considering the behavior of 
the met r ic  on the set  of incorrect paths for  a particular code, we consider the average behavior 

on the set of incorrect paths for  an ensemble of codes. 

bols along incorrect paths a r e  independent, and therefore it is possible to consider all  the in- 

correct  paths simply. 

a s  the average is guaranteed. 

Over such an ensemble, the output sym- 

F r o m  such a result, a particular code that gives resul ts  at least a s  good 

An analogous procedure is not plausible in measurements. 

ensemble of unknown parameters  and thereby obtain independence, it is senseless  to  say there  

is a set  of unknown parameters  which could be measured at least  a s  w e l l  a s  an average. In ac-  

tuality, we a r e  trying to  measure a particular set of parameters  and do not ca re  if there  is a i -  

other set of parameters  on which we could do a better job. W e  might a lso consider the ensemble 

of input signals, but the constraints imposed by the transformation a r e  usually too strong'to per-  

mit any simplifications to  result among the incorrect output vectors. 

Even if we could consider an 

Because the device being measured is not under the observer 's  control, we have seen that 

it is possible for two distinct hypothesis vectors to produce s imi la r  output vectors  and for de- 

pendencies to  exist among output values along a path. 

which must be overcome to proceed with the analysis. 

tion, re fe r red  to a s  the differential bias assumption, which w i l l  permit the analysis to  be com- 

pleted and which, in addition, is reasonable from an intuitive viewpoint. Generally, this assump- 
tion implies that once an e r r o r  is made in the decoding, a bias w i l l  be produced in la te r  hypoth- 
esized outputs which acts  in the same way that the addition of an extra  noise source would. This 

appearance of additional noise in the data w i l l  indicate to  the decoder that an e r r o r  was made and 
that a re t racing procedure should be started. 

fined precisely in Sec. 111-E. 

Both these features give r i s e  to difficulties 

Consequently, we shall make an assump- 

The differential bias assumption itself will be de- 

III. AVERAGE NUMBER OF COMPUTATIONS 

A. Introduction 

In th i s  section, we shal l  compute an upper bound to  the average number of t imes the decoder 

follows loop A of Fig. 5 in decoding a branch of the t ree .  

done by Fano! Since loop A must be taken for  the decoder to  move forward, the number of t imes  
the decoder follows it is within a factor of two of the total number of computations. 

w e  shall henceforth define a computation a s  one pass around loop A. 
A is t raversed  when the decoder is accepting a node one level deeper than the current  depth. 

Thus threshold settings discussed in the next section a r e  compared with the value of the metr ic  

at such a node. 

This  computation is s imi la r  to that 

Therefore,  

Note f rom Fig. 5 that loop 
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W e  shall  see that when there  is a sufficient difference between the correct  and incorrect 

noise-free data points a s  seen by the observer,  it is possible to decode a branch of the t r e e  with 

a number of computations that is independent of the depth of the node under consideration. 
addition, we shall s e e  that a s  this difference grows, the bound on the computations will decrease 

rapidly. 

In 

The bounds that w i l l  be derived a r e  computed with the bias constant R discussed in Sec. 11-B 

a s  a parameter.  
derived for the Gaussian noise case.  

The effects of various values f o r  this quantity a r e  shown by means of curves 

B. Splitting FJ 
In the consideration of N, the average number of computations required per  branch of the 

decoding t ree ,  it is desirable to consider separately the average number of computations made 

in each of three circumstances. 
a reference node and i l lustrate in a typical case the role  it plays in the computation. 
along the correct path can be regarded a s  the so-called reference node. 

N, we consider all  paths stemming f rom this node and calculate the average number of branches 
along such paths that must be considered. Once this has  been done, the next reference node and 

a l l  paths stemming from it must be considered in the s a m e  way. Since each node along the cor-  

r ec t  path has  a s imilar  set  of incorrect paths stemming f rom it. we can consider the total number 
of computations on incorrect paths stemming from the reference node and the total number of 

computations on the correct  branch stemming f rom the reference node a s  the total number of 

computations per branch. 

Before defining these classes ,  we shall  introduce the notion of 

Any node 

In the computation of 
- 

In the remainder of this section, we shall refer  t o  an incorrect node a s  a node along an in- 

correct  path stemming f rom the reference node. 
when the correct node from which they s tem is considered to be the reference node. 

All other incorrect nodes will be considered 

If we recall f rom Sec. 11-G that the threshold takes on values quantized by increments of T 
0’ 

we shall  find it convenient to define T i  a s  the highest value of the threshold sti l l  below the value 
of the metr ic  at the reference node. 

changes, we can choose i ts  reference to be arbi t rary.  

at  the reference node. 

In addition, since the decoder operates only on metr ic  

For  convenience, we assume that T = 0 

It will be convenient to divide the number of computations to decode one branch into th ree  

par ts .  F i r s t ,  there  w i l l  be one computation each t ime the decoder re turns  to the reference node 

and t e s t s  the correct branch. Let E denote the average number of such computations. Second, 

there  a r e  those computations required to consider incorrect nodes when the threshold is set  at  

T and at various levels above T i. Denote this average number by E:. Finally, there  a r e  those 

computations required to  consider all  incorrect nodes when the threshold is set  at various levels 

below Ti.  

will be considered by the decoder, many may not because of the specific way in which the metric 

var ies  along the path they a r e  on. To be conservative, w e  neglect the existence of such metric 

variations and bound the desired result by one obtained by considering them all. 

C 

We let E.- be the average number of computations in this category. 
Although it is possible that all  the incorrect nodes with metr ic  above a particular threshold 

Thus 
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-t . 
where E 
along incorrect paths when the threshold is set at some value above Ti,  and Ei- is the quantity 

is the average number of computations on the correct  branch, Ni is the average number 
C 

along incorrect paths when the threshold is set at some value below T 1' 
In the calculation of N, we neglect the fact that in measurement problems of interest  the 

t r e e  is  of finite depth and instead we assume that the depth is infinite. 

bound to the average number of computations required for  a finite t ree ,  since the additional depths 

of an infinite t r e e  provide more branches that the decoder may have to investigate. 

Clearly, this is an upper 

In particular,  if the s ize  of the t r e e  is increased, there  wi l l  be more possibilities in which 

an event causing e r r o r  could occur. Thus the number of computations to  decode one branch in- 

c reases  as the s ize  of the t r e e  beyond it increases, and in the limit the tree can grow to  infinite 

s ize .  
Once the infinite-depth tree is assumed, it may be noted that the average number of compu- 

tations to  decode the correct  branch stemming from a reference node is independent of the ref-  

erence node's depth. 

metric along paths stemming from the reference node, and the composition of the se t  of such 

paths is independent of the reference node. 

This i s  because the number of computations depends on the behavior of the 

C. Events Contributing to Partial Averages 

We consider Nc f i rs t .  Since succeeding branches on the correct  path w i l l  be considered 

when the nodes from which they s tem a r e  regarded a s  reference nodes, we need consider only 

the f i rs t  branch. 
sidered once for  each threshold below Ti ,  below which the correct  path falls. 

decoder wi l l  not return to the reference node i f  the total metr ic  does not fall below T i ,  but wi l l  
do so  once for  each different threshold value below T i  used by the decoder. 

This branch will,  of course, be considered at  least  once and it wi l l  be recon- 
In particular,  the 

Define P(T) a s  the probability that the total metric falls  below T somewhere along the cor-  

rect  path. Using this quantity, we  can bound Nc a s  

m 

A s  wi l l  be seen la ter ,  and is heuristically obvious, P(T) decreases with decreasing T. Therefore, 

Next we consider nodes along incorrect paths stemming from the reference node which a r e  

considered when the threshold is set at  a value, T* >/Ti .  
above such a threshold wi l l  be considered once for each threshold value above or at Ti. 
incorrect nodes in this category may or may not be considered by the decoder. depending on the 

behavior of the metr ic  on the correct  path and on the manner in which the metric var ies  along 

incorrect paths. 
This is illustrated in Fig. 7(a). 

the reference node and an e r r o r  resul ts .  

Before the decoder returns to the reference node, one computation on the incorrect path wi l l  be 

made with the threshold at T i  + 2To, two at T i To, and two with it at  T i .  

It is possible that all incorrect nodes 
The 

To be conservative, we  assume that a l l  nodes above T' > / T i  wi l l  be considered. 
The incorrect path's metric exceeds that of the correct  path at  

Then the threshold is eventually raised to  T i  + 2To. 
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TI -2T0 b) Error when metric decreases on correct path. 

TI +To 

TI 

(c) Error when metric decreases on both correct 
and incorrect paths. 

T, -To 
INCORRECT 

Fig. 7. Typical metric behavior. 
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Therefore ,  we see  that if N(T*) is defined a s  the average number of nodes along incorrect 
c 

- t .  paths a t  which the total metr ic  equals or exceeds T",  N. is upper bounded by the sum 

W e  shall see  la te r  that N(T*) increases  with decreasing T* s o  that 

m 

Finally, we consider R.-, the number of computations made on incorrect paths for  threshold 
1 

settings below T I .  

some depth. 
for  which the cor rec t  path falls below T*  t To. 

example, one incorrect node w i l l  be t r ied  with the threshold at  T I ,  one at T I  - To, and two at 

Such branches will be considered only i f  the correct  path falls below T I  at 
In fact, these branches will be reconsidered once for each threshold value T *  < 0, 

In this This  may be illustrated a s  in Fig. 7(b). 

T --To.  1 
Consequently, If we define N(T*/T) as  the average number of nodes on an incorrect path 

exceeding T* when the correct  path falls below T,  we can upper bound Ri- by the sum 

W 

where we have again used the monotone properties of P(T)  and N(T*) which will be discussed 
la te r?  

The reader  may note that if  the correct path falls below T,< T some incorrect nodes may 

be considered with the threshold setting above TI. Such a case is illustrated in Fig. 7(c). Since 

the metr ic  on the correct  path fell  below T I  and also fell below that of the incorrect path shown, 
the incorrect path was t r ied by the decoder. 

T I  + To. 

would be taken only i f  the metr ic  on the correct path falls below TI .  

1' 

At one point, node A will be considered for T" = 

Such a computation would be included in (and also 3;) despite the fact that th i s  path 

D. Chernoff Bounds to Probabilities 

The average number of computations has been upper bounded by three  sums involving two 
quantities P(T) and N(T*), the probability of the correct  path falling below T and the average 

number of incorrect nodes above T * ,  respectively. 
bounded by means of the well-known Chernoff bound. 

In this section, these quantities a r e  upper 
11 

This bound s ta tes  that if x is a random variable, F(x)  is its cumulative distribution function, 

and y ( r )  is the corresponding moment generating function, 

t A  slight improvement in  the bound can be obtained if this monotone condition i s  not imposed until the summation 
is  performed. 
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y ( r )  = erx dF(x) 

then 

and 

I - F(X)  ,< y ( r )  e-rx , any r >, 0 . ( 9 )  

These inequalities have been extremely valuable in the analysis of sequential decoding of t r e e  

encoded messages and w e  shall find them very useful he re  as well. 
Let Pk(T) = P r ( M k  < T )  be the probability that the value of the metr ic  Mk a t  the kth node be- 

yond the reference node on the correct  path is smaller  than some value T .  

the correct  path the metric increment is R t l n p  (n.) ,  where n .  = y .  - z .  
” 3  J J J ’  

the metric on a correct path depends only on the noise samples.  

We observe that on 

Thus the behavior of 

Let ydk) ( r )  be the moment generating function of the metric on a correct  path of length k. 

That is, 

J I k 

k 

(k)(r)  = 1.. .I n pn(nj) exp [R t lnpn(n.)]  d n l ’ .  . dn 
YC 

j =  1 j =  1 

where p (n.)  is the probability density function of the noise. Then the Chernoff bound implies that n i  

Pk(T) ,< yLk)(r) e-nT = exp {pkk)(r)  - rT} , r ,< 0 (1 1) 

where 

p i k ) ( r )  = l nydk) ( r )  . 

Next we turn to N(T’*) which was defined in Sec. 111-C a s  the total number of incorrect nodes 

above T’:’. Let P ( T Q )  be the probability that the value of the metric MZ at  the kth node along a 

particular incorrect path stemming from the reference node exceeds a value T *.  This quantity 

depends on the particular incorrect path under consideration. 

k 

k-  1 W e  now note that i f  we consider D quantization levels there  is a total of (D - 1) D com- 

pletely incorrect paths of length k stemming f rom the reference node. 

P (T*)  of those computed for all  these incorrect paths. 

nodes at depth k exceeding T *  is given by 

Let P r ( T ’ r ; )  be the largest  

Then the average number of incorrect k 

(D-I) Dk-’ 

Pr (metric on ith incorrect path of length 
k exceeds T’K) . c - 

Nk(T*) = 

i= 1 

Since Pk(T*),< P F ( T * )  for all  incorrect paths it follows that 

Nk(T*) ,< P F ( T ” )  . (D - 1) D k- 1 

But the Chernoff bounding procedure allows us to  upper bound PF(T, :  1. Note that 

P ( y . l z P )  = pn(y. - z P )  = p (z .  - z *  t n.) . 
“ J  J J J  “ J  J J 
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, Let y!k)(t) be the moment generating function of the metric along the incorrect path of length k 
giving rise to P?(T*) 

1 

(13)  
n J  J J I 

k 

ylk) ( t )  = I.. .I n pn(nj) exp [R + l n p  (2. - zy + n. ) ]  dnl. .  . dnk 
j= 1 j=  1 

where pn(n.) is the probability density for  the f h  one of the k independent noise samples, z .  is 

the jth noise-free output on the correct path, and z? is the f h  noise-free output on the incorrect 

path giving rise to the maximum Pk(T*), PF(T*). Then by the Chernoff bound 

J J 
J 

(14) 
-tT * PF(T*) \< yjk) ( t )  e , for a n y t  > O  

so that combining Eqs. (12) and (14) 

- 
N ~ ( T * )  < (D - I) D ~ - ~  yi(k)(t) e-tT* . 

G(T* 1 T) can be bounded using a s imilar  technique. Let 

P (T* I T )  = P,(M; >,T* (M, < T) 
kln 

be the conditional probability that the value of the metric M l  at the kth node along a particular 

incorrect path stemming from the reference node exceeds a value T* when the metr ic  Mn at  the 
nth node along the correct  path falls  below T.  This quantity depends on the particular incorrect 

path under consideration. 

As before, we  note that there  a r e  a total of (D - 1) Dk-' completely incorrect paths stemming 

f r o m  the reference node. 

these incorrect paths. 

Let Pm (T* IT) be the largest  P (T* IT) of those computed for  a l l  
k l n  kln 

Then the same procedure can be employed by assuming that 

P (T* I T )  P ~ ~ ( T *  I T )  . (16) 
kln  

for  a l l  incorrect paths. 

k above T*,  given that the correct  path is below T at  depth n, 

Therefore, the average number of nodes along incorrect paths of length 

is bounded by 

- 
N (T* IT),< 'kin (T* I T )  . ( D -  i)gk-l . 

k l n  

If w e  now multiply both sides of this inequality by Pn(T) w e  obtain 

It is worthy of note that the right-hand side of th i s  expression is also an upper bound to  the joint 

probability that Mn < T on the correct  path and that there  is at least one node at distance k along 
some incorrect path stemming from the reference node for which Mk &T* .  This bound is due 

to  the fact that the probability of a union of events is upper bounded by the sum of probabilities 
of the individual events. 

* 

To fur ther  bound this joint probability, we can employ the Chernoff bound in two dimensions. 

Note a s  before that 
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and 

. 

when 

n .  = y .  - z.  . 
J J J  

Let -yi(". "(r, t )  be the joint moment generating function of the metr ic  on the correct  path of length 

n together with the metr ic  on the incorrect path of length k leading to the maximum P (T* IT), 
P m  (T* IT). That is, 

k ln  
kln 

k I 

t t [R t 1np (z.  - z ?  t nj)l 
n J  J I 

j =  1 

dnl . .  . dnk 

if k a n ,  t >, 0, and r <  0, and 

j =  1 

+ t dn l . .  . dnk 
n J  J J 

k 
[R t In p ( z .  - z* t n. ) ]  

j =  1 

if k,< n, t >/O, and r \< 0. Then 

P r ( M n  < T, ME > T * ) <  yi("' k ) ( r , t )  exp{-rT - tT*)  (21) 

for t >- 0 and r\c 0. 

Before proceeding further in the calculation, we make an assumption about the incorrect 

paths in o rde r  that all  possible incorrect paths w i l l  not have to  be considered individually. 

E. Differential Bias Assumption 

The calculation of the moment generating functions defined in Eqs. (19) and (20)  is complicated 

by the dependencies that exist between the metr ic  values on the correct  path and those on the in- 

correct  path, and by dependencies existing along incorrect paths. 

that their  computation is tractable without some simplifying assumption. 

may be noted that for an  incorrect decision to  be discovered, i t s  consequences must produce an 

observable discrepancy between the t rue  noise-free data vector and the hypothesized noise-free 
data vector. 

ancy must appear as an  ari thmetic difference in a t  least some of the vector components depending 

Indeed, it does not appear 

In this connection, it 

Because of the analog nature of the noise effects under consideration, this discrep- 
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Fig. 8. Differential bias assumption. 

z, 

+ 

on differing hypotheses. 

With these remarks  as motivation. we make the following assumptiont: 

Thus the effect of an  erroneous decision is to produce a bias in the data. 

On al l  incorrect paths, each incorrect output value zf differs f rom the 
corresponding correct  output value zi by at least  a constant 6 .  
cisely. I zi  - zf I > 6 f o r  a l l  incorrect branches. 

More pre-  

W e  shall s e e  that under this condition, the moment generating functions can be calculated'with- 

out regard  to  the dependencies existing along incorrect paths. 

A geometric interpretation of this assumption is readily obtained. Consider the noise-free 

data vector of each possible t r e e  path of length n as a point in n-dimensional Euclidean space. 
The above assumption implies that the components of each incorrect point differ by at least 6 

f rom the corresponding components of the correct point. 

in Fig. 8. 

This is illustrated for two dimensions 

F. Moment Generating Functions 

Under the differential bias assumption, several simplifications in connection with the r e -  

quired moment generating functions occur. We first  consider ~5c(~)(r). By taking advantage of 

the independence among noise samples, we obtain 

~~~ ~ ~ ~ 

t This assumption was recently weakened to the requirement that 

k 

for a l l  incorrect paths of length k where the summation extends Over the incorrect portion of the path. The cal- 
culation of the moment generating functions under this weakened assumption i s  sketched in Appendix C. For 
Gaussian white noise, the differential bias assumption can be weakened to 

for a l l  incorrect paths. 
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Thus it is sufficient to calculate y (r) which depends only on the probability density function for 

the noise. 
1 

In dealing with yi(k)(t) and -yi("' "(r, t) ,  we shall show that the corresponding t rue  moment gen- 
erating functions a r e  upper bounded by generating functions calculated under the differential bias 

assumption alone. 
(20). and (21) along specific paths, they a r e  upper bounded by moment generating functions in- 

dependent of the particular incorrect path. 
to the internal constraints of the transducer a r e  removed f rom consideration. 
is made explicit by the following theorem. 

Thus, although these moment generating functions were defined by Eqs. (13), 

In addition, dependencies along incorrect paths due 
This upper bound 

Theorem. 

If we define 

and if pn(y/z) is a symmetric,  monotone-decreasing function of Iy - z 1 = [ n 1 ,  

if 6 > bo and t > 0. 

Proof. 

By assumptions described in the theorem, p (y/z) = p (n) is a monotone-decreasing sym- n n 
metr ic  function of In/. 
by Lemma 2 in Appendix A, the theorem is proved. 

we have 

But a positive power of such a function is also of the s a m e  type. Hence 

Turning now to yJk)(t), we again use the independence of the noise samples.  F r o m  Eq. (13), 
1 
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where 

k 
= e tm n r pn(nj) p (z. - z? t n.) t dn. 

" J  J J J 

(26)  
t 

YZ(t) = 1 pn(n) pn(n + 6 )  dn . 

The inequality follows f r o m  the theorem expressed by Eq. (24). 

function dependent only on the noise probability density function and on the constant 6,  introduced 
by the differential bias assumption. 

Thus Y J k ) ( t )  is bounded by a 
1 

In the same way ui(nBk)(r .  t )  can be shown to be bounded by a function depending only on the 

probability density function of the noise and on the constant 6 .  F r o m  Eq. (20) 

j=  I 

k 

y,'"' "(r, t )  = 1. . .I n Pn(nj) exp 
j= 1 

k I 

+ t 2 [R t 1np (z. - Z P  + n.)]  hl.. . cink 
j= 1 n J  J 3 I 

j=n+ 1 

< exp {nrR + ktR} y$-, t )  y,k-"(t) 

fo r  k 3". t > 0, r <  0, where 

and y2(t)  is defined in Eq. (26) .  If n >, k, Eq. (27) is replaced by 

where y l ( r )  is defined in Eq. (23a). 

laborious. 

that is common t o  the two expressions above. 

The fact that a different bound obtains in the two cases  will make la ter  computations very 
However, a simple application of the Schwartz inequality" gives us  an upper bound 

This bound is derived in Appendix A a s  Lemma I 
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and indicates that we can define two functions, each of which is simply related to the pertinent 

moment generating function in the following manner: 

Then 

y 2 ( t ) <  Y p  . (30) 

Applying these bounds, we obtain f r o m  Eqs. (27)  and (30) the following bound to y.(n> "(r, t )  

which holds for all values of n and k. 

and r <  0 and t > 0. 

Hence we can deal with y l ( r )  and yZ( t )  which depend only on the noise density function and 

the constant 6 .  It will be convenient to define 

and 

so that f rom Eqs. (31a) and (31b) 

(32) 
1 1 y;"'"(r, t )  ,< exp{n [rR + 7 pi(2r)]  + k [tR + 2 p2(2t)]} 

for r\< 0 and t > 0. 

Now that we have discussed the moment generating functions and have introduced the differ- 

ential bias assumption, we can return to  the main objective, that of bounding P (T) ,  N(T*), and 

N(T* IT), the probability that the metr ic  on the correct  path falls below T for some depth, the 

average number of incorrect nodes along all  incorrect paths for which the metr ic  exceeds T*,  

and the same quantity conditional on the correct  path's falling below T.  Since the probability of 

a union of events is l e s s  than o r  equal to the sum of the individual events, we can upper bound 

these quantities by the proper sums over n and k. 

- 

Thus 

W 

P(T),< Pn(T) 
n= 1 

50 

N(T*) < -k N ( T * )  
k= 1 

(33) 

(34) 



where PJT) is the probability that the correct  path is below T at depth n, Nk(T*) is the average 

number of nodes along incorrect paths at  depth k which exceed T*,  and Nkl (T* IT) is the aver-  

age number of nodes along incorrect paths at depth k which exceed T *  when the correct  path 

falls  below T at  depth n, a s  discussed in Sec. 111-D. 

n 

G. Performing the Sums 

The contents of the previous sections can be summarized by indicating th ree  summations t o  

be performed. Combining Eqs. (3), (111, (221, (301, and (331, we obtain 

m m  

I - 
Nc 4 + 2 exp {n [ rR  + 7 p l ( 2 r ) l  + jrTo} 

j=O n = l  

m m  

= 1 + 2 exp{jrT + na( r )>  , r\< 0 
0 

j=O n = i  

I a(r)  = r R  + 2 p1(2r) 

F rom Eqs. (51, (15), (251, (301, and (34), we get 

m m  

fil< (D - i) Dk-i exp{k [tR + $ p2(2t)] - jtTo} 
jZ-1 k = l  

m m  

I E exp{-jtTo + k [tR + 2 p2(2t) + lnD]) D - i  
- D  

jZ-1 k = i  

jz-1 k = i  

1 B(t) = tR + 2 p2(2t) + 1nD . 

Finally by considering Eq. (7) and successively substituting Eqs. ( i8 ) ,  (2i) ,  (32), and (35 ) .  we obtain 

m m m  

-- i 
Ni < E E E (D - l)Dk- '  exp{jrTo + ( j  + 2) tTo + n [rR + 2 pi(2r)]} 

j=O k = i  n = l  

m m  

i - -  - 
- D  E E exp{(j + 2) tTo + k [tR + 2 p2(2t) + In Dl} 

j=O k = i  

m 

x expQrTo + n [rR + 3 1 p4(2r)l} 
n= 0 
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j = O  k = l  n= 0 

where 

1 P(t) = tR t 7 p,(Zt) t 1nD , t 3 0  

and 

1 a ( r )  = rR t 7 pl(Zr) , r ,< 0 

(39) 

and p1(2r) and p,(2t) a r e  given in Eq. (31b). 

bounds to t e r m s  that have been combined in the calculations. It is not necessary,  nor is it de- 

sirable,  that r and t be chosen the same for all  these t e rms ,  but ra ther  each of these param- 

e t e r s  should be chosen to minimize the bound. Thus the optimum r and t a r e  really functions 

of the summing indices j ,  k, and n. 

The parameters r and t appearing in these summations were introduced in the Chernoff 

Because of the arithmetic complications produced by complete optimization, it is desirable 
to pick only two values for r and two for t .  Thus we choose 

1 r n < n  

r = I o  r1 n > , n  1 

and 

to k <  kl 

t l  k > k  
t =  [ 

1 '  

Since the exponent in Eq. (38) is dominated by the t e r m s  independent of n and k w h e n  n and k 

a r e  small ,  we shall choose ro and to such that the coefficients of n and k a r e  each zero.  

as n and k increase beyond n1 and kl,, respectively, and this t e r m  becomes more important, 

we shall choose r More precisely, ro, rl, to, and t l  a r e  
chosen to satisfy 

Then, 

and t l  to minimize the coefficient. 1 

a ( r o )  = 0 ( 4 3 )  

P(to)  = 0 (44) 

P'(t1) = 0 . (46) 

a l ( r  ) = 0 (45) 1 

In addition, n1 and kl a r e  chosen a s  those values of n and k for which the bounds obtained using 

r and t just exceed those obtained using r1 and t l .  
0 0 

That is, we choose n1 such that the t e r m  corresponding to n = n 1 - 1 is sma l l e r  for r = r 0 

than for r = rl ,  whereas the t e r m  corresponding to n = n1 is larger  for r = r 0 than for r = r 1' 
Thus 

jr T ,< (nl - 1) a ( r l )  t j r lTo (47) 0 0  



j r  T > n  o(rl) + j r l T o  . 
0 0  I 

That is. n is defined a s  an integer satisfying 
I 

for  jTo > 0 and n1 = 0 for jTo = 0. Similarly, we define kl a s  the integer satisfying 

for  jTo > 0 and kl = 0 for jTo = 0. Therefore,  

exp In , a ( r l )  + jrlTol < exp [jroTol (51) 

and 

exp [klB(tl) + jtlTol ,< exp IjtoTol . (52) 

W e  shall car ry  out the summations first, and then discuss the conditions under which solu- 

tions can be obtained. 
n -1 

m 

- 
Nc'< 1 + 2 2 exp[jroTol+ 

1 j= 0 n=n 

i Using Eq. (49) and the relation C x = 1/(1 - x), 

i 2 
Next, using the relation C ix = x/( 1 - x)  , 

r T  
1 - bo - rl) To e 0 0  

N c <  I+ t 
a (rl) 

(53) 

-+ In the sum for  N i ,  we note that except fo r  the f i rs t  term,  we a r e  dealing with positive thresh-  
old values. Thus the bound describing the choice of k l  is not valid and instead we use a single 

value of t ,  t2, for  all  nonnegative values of j.  The final bound can thus be optimized over this  

additional parameter .  Thus, f rom Eqs. (37), (42), and ( 5 0 ) ,  

37 



2 i  3 Finally, from Eqs. (38), (411, (42), (49), and (50)  a s  well a s  the relation C i x = x(1 - x ) / ( l  - x) , 

j=O k = l  k=kl  

m 

exP[jroTol -+ exp[jr lTo t n a ( r l ) ]  
n=n n= 1 

if a ( r l )  < 0, P(t,) < 0, and t 

the ratio 6 /@ that permits convergence of the sums.  
shall  have shown that the number of computations for decoding one branch is bounded by a 

t ro < 0. 
0 

W e  shall  see that these conditions on rl, t l ,  ro, and t place restrictions on the range of 
0 2 2  If these conditions can be satisfied, we 

constant. 

H.  Existence Conditions 

It remains to show that solutions to the equations 

a ( r ) = O  r < O  
0 0 

P(to) = 0 to > 0 

a ' ( r  ) = 0 rl < 0 1 .  

P'(t1) = 0 t l  > 0 

exist in such a manner that 

r + t o < O  
0 
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Fig. 9. Typical a(r) behavior. 

W e  deal f i rs t  with (Y(r-1. 
That is, there  is an ro < 0 and an r l  < 0 such that 

It must be shown that o ( r )  has the appearance of curve A of Fig. 9. 

o(r0) = 0 

and 

a l ( r  ) = 0 . 1 

We shall  show that ( ~ ' ( 0 )  i s  positive for noise powers l e s s  than some crit ical  value, that 

(Y (r)  is convex upward, and that (Y (r) takes on a positive value for r > - i / 2 .  

provide the desired result. 

These conditions 

Some of the properties of ( ~ ( r )  are easily calculated. From Eqs. (23a), (3ib), and (40), 

unless p (n) = 0 for some interval of nonzero length. 

impossible since some noise wi l l  always be present and should be included in any realist ic model. 

From an engineering standpoint, this is n 

Further,  

If R exceeds H(N),  the entropy of the noise, then ( ~ ' ( 0 )  will be positive. a ( r )  is convex upward: 

1+2r dn 
2 J p(n)i+2r [lnp(n)12 dn . J p(n) 

a' '  (r) = 
[J p(n)lt2' dnI2 

lnp(n) dn 
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Application of the Schwartz inequality to the numerator gives the desired result  that cr"(r) > 0. . 
Lemma 3 in Appendix A provides the proof that ro and r i  do exist. 

Turning now to P(t), we obtain several  of i t s  properties:  

P ( t )  = tR t I n 1  p(n) p(n t 6)2t dn t 1nD 

l 2  p(n) p(n t 6)2t lnp(n)  dn 

s p(n) p(n t dn 
- 2  [' 

Again applying the Schwartz inequality, we have the result  that p" ( t )  >/ 0. 

1 3 - 2 2 - 5 9 1 2  1 

Fig. 10. Typical @(t) behavior. 

t 

These properties of P(t) show that it has  one of the th ree  forms  illustrated in Fig. I O .  As 

this figure points out, only form C satisfies the conditions 

P(tJ = 0 to > 0 

and 

P'(t;) = 0 t * > 0  . 

Unfortunately, the specific form of p(n) must be considered before it can be definitely estab- 

lished that P(t) has form C. 

W e  therefore turn to a specific form for  p(n), the Gaussian form, which will be studied in detail 

because of i t s  practical interest .  

In addition, the requirement that t t r < 0 cannot be established. 
0 0  

I. Gaussian Noise 

Since Gaussian white noise is that most commonly encountered in practice, we shall  discuss 

it in detail. 
ability density function 

The noise vector has independent components each determined according to the prob- 
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Using this density function, the various moment generating functions can be computed by simple 

integration. F r o m  Eqs. (23a) and (23b), 

Lo 

( 2 7 r ( ~ ~ ) - ( ~ + ~ ) / ~  exp[-n 2 (I + r)/2u 2 ] dn 
= s, 

m 
-(itt)/2 exp{-[n 2 t t(n t 6 )  2 2  ]/2u 1 dn 

- 1/2 2 2  2 t  
= 1 ( 2 * ~  1 ( 1  + t)] exp[-6 t/2u (1 + t ) ~  . 

Thus, using Eqs. (39) and (40), 

I 2 1  
4 

a ( r )  = r(R - 2 In 2na ) - - In (i + 2 r )  

and 

62t + h D  . B ( t ) = t ( R - z  I l n 2 ~ u  Z i  ) - , l n ( i + 2 t ) -  
2a2(1 t 2t) 

Because of the transcendental nature of these equations, it is not possible to solve them ex- 

plicitly for  r and to. However, solutions can be found for  ri and ti. 
0 

I - 2 c  r = -  
I 4 c  

where 

I 2 C = R -  2 l n2 ro  

and 

6‘ s = -  . 2 
U 

Although it will not always do S O ,  the  positive term in the brackets is the only one which can lead 

to  a positive t i  for positive C and S. 
It was not possible to  obtain closed-form conditions under which B(t ) and t I 0 

tive. In view of these difficulties, a s  well a s  the complexity of the bounds to  Nc, 
we have plotted the bounds a s  a function of R - In 27ru , the value of the metr ic  when the noise 

t r a r e  nega- 

and 
1’ 2 
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sample is zero. The three bounds, a s  well a s  their  s u m  N, a r e  plotted in Fig. l I ( a -d ) ,  with the 

ratio 6 /a 
2 to be one-half the constant R - 

. 
2 2  as a parameter.  In plotting these curves, D was se t  equal to 2 and To was chosen 

In 2na  . These curves w i l l  be discussed in the next section. 

J. Summary 

The results of this section can be summarized in the following theorem: 

Theorem. 

If D-level, sequentially involved parameters  a r e  decoded f rom data perturbed by additive 

noise with probability density given by p(y 1 z),  a monotone-decreasing symmetr ic  function of 
Iy - z 1 ,  and if each noise-free data point along an incorrect path differs f rom the corresponding 

noise-free point on the correct  path by at  least  6, the average number of computations to decode 
a branch is bounded by the sum of the three expressions for Nc, N:, and N; given in Sec. 111-G. 

The fact that this bound is a constant, independent of the depth of the reference node, indi- 

cates that a s  long a s  the conditions of the theorem hold, the average number of computations for 
decoding a branch is fixed for all  depths. 

To  better understand the bounds calculated in this section, we discuss them in detail for  

Gaussian noise. 
branches that stem from the reference node is small  whenever the bias constant, R - 

is large, and is very large whenever the constant is small .  

the bias is too small, the correct  path will always be negative and will therefore appear like an 

incorrect path to the decoder. Since considerations along the correct  path do not involve points 
along incorrect paths, the distance of these paths f rom the correct  one does not enter the bound. 

threshold is above - To, increases with the bias constant and does s o  more rapidly a s  6 /a in- 
creases .  
belong to this group and w i l l  appear correct  to the decoder. is small ,  the correct  path 

will look very similar to the incorrect paths, and many branches will be t raversed before con- 

ditions bring about a re turn to the correct  path. 

W e  see  in Fig. I l ( a )  that the number of computations for decoding correct  
2 In 2na , 

This is due to  the fact that whenever 

The contribution to  the average number of computations along incorrect paths, when the 
2 2 .  

This is seen in Fig. I l (b) .  If the bias constant increases,  more incorrect nodes will 

If 6 /u 2 2 .  

Finally, we consider the average number of computations along incorrect paths when the 

threshold is below -To. 
and if  it is very small  the correct  path will also be decreasing, thereby causing these incorrect 

paths to be investigated frequently. 
be seen in Fig. I l ( c ) .  

be  investigated only if a very large noise sample occurs.  

many computations would be needed to overcome it, especially i f  6 /a 

In Fig. I l(d),  the composite curves a r e  plotted. 

When the bias is small, most of the incorrect will belong to this group, 

Thus there  is a sha rp  increase in Ni- for small  bias, a s  can 
If the bias constant is very large,  an incorrect path in this category would 

In the event that it does occur, very 
2 2 .  1s too small .  

The choice of the bias constant does not 
2 2 .  s e e m  to be too critical,.  so long as 6 /u 

sitivity of 
is not too small .  As this quantity decreases,  the sen- 

to the bias constant increases.  

LV. PROBABILITY OF ERROR 

A. Introduction 

In this section, we shall  compute a bound to the probability of reaching an incorrect terminal 
W e  shall  see that it decreases  exponentially with W, the node that is satisfactory to the decoder. 
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length of the tail, and that the exponent improves a s  the incremental bias 6 increases  for a fixed- 
probability density function. 
parameter ,  and the effects of varying it a r e  considered by means of curves derived for Gaussian 

noise. 

The error-probability bound is derived with the bias constant a s  a 

B. Events Leading to Errors  

Recall that in Sec. 111 we introduced the notion of a reference node, and computed the average 

The finite s i ze  number of computations required to accept the correct branch stemming from it. 

of the t r e e  was ignored, since the infinite s i ze  case provided an upper bound and was simpler to 

consider. 

vector along an incorrect path before the metric on the incorrect path has  begun to  fall. Conse- 

quently, the finite s ize  of the t r e e  plays a role in producing e r r o r s  and must be considered when 

calculating the e r r o r  probability. 

However, the finite s ize  of the t r e e  could cause the decoder t o  complete the hypothesis 

In this  consideration of the finite t ree ,  the nodes along the correct  path a r e  no longer homo- 

geneous. Therefore,  each correct  node must be considered separately, and the theorem on the 

probability of a union of events must be used to bound the total e r r o r  probability. 

consider each node along the correct  path a s  the reference node separately. 
homogeneity of the nodes along the correct path, w e  must define T i (P )  a s  the highest threshold 

below the metr ic  value at the reference node for depth P .  Since we a r e  again considering only 
changes in the metric, we may arbitrari ly choose i t s  reference. For convenience, we choose 

the metr ic  to be zero at the reference node. 

A s  before, we 

Because of the in- 

Thus -T < T1(P) 6 0. 0 

There  a r e  two situations from which e r r o r s  can ar ise .  Suppose, f irst ,  that there  is an in- 
correct  path leaving the correct  path at  depth 1 with a metr ic  which remains above Ti(P)  for the 

entire t r e e  duration after depth P ,  and that this path is tested by the decoder before the correct  
one. It is c l ea r  that this path will appear satisfactory to  the decoder regardless  of the behavior 
of the metr ic  on the correct  path. Unless the metric on a path under test  falls  below Ti(P),  the 
decoder will never return to the node to change its  incorrect decision. 

Let Q +  be the probability that there  is an  incorrect path remaining above Ti(!) for all  depths 

Since the probability of a union of events is bounded by the s u m  of the probabilities of the 

+ I 
greater  than 1 .  

type. 
individual events, we have 

Let Q be the total contribution to the e r r o r  probability by situations of this 

The other situation resulting in e r r o r  takes place i f  the metr ic  on the correct  path a t  some 

node beyond P falls  below a threshold value T <  TI(P) .  

t he re  should be an incorrect path leaving the correct path at  node L and remaining above T - T 
until the end of the t ree ,  difficulty might a r i s e .  

below some T ,  other paths will be t r ied until one is found which is above T - T . 
w i l l  be followed until it falls  below T - T If it does not, an e r r o r  will occur. 

Define, therefore,  QP- a s  the probability that the metric on the correct  path start ing at  depth 
T (I ) and that there  is an incorrect path leaving the cor-  

Then, using the theorem on the prob- 

If the correct  path falls  below T and 

0 
For when the metr ic  on the correct  path falls  

Such a path 
0 

0' 

I falls below some threshold value T 
rect  path at  depth I with metr ic  remaining above T - T 
ability of a union of events, w e  bound the total contribution to the e r r o r  probability f rom this 

second e r r o r  situation Q- by the s u m  

I 

0' 
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L 

Q-d 2 Q; . 
P = 1  

Finally, the total e r r o r  probability is bounded by the s u m  of the two contributions s o  that 

Pe< Qt + Q- 

C. Chernoff Bounds 
t Fi r s t ,  we shall compute a bound to  Q, , the probability that there  is some incorrect path 

with a metr ic  remaining above T i @ )  for the entire t r e e  duration. 

that a particular incorrect path remains above T 

likely to  remain above TI(!). 

the desired probability for some path. 

W e  consider the probability 

1, using fo r  the computation that path most 
W e  can then multiply by the number of paths to obtain a bound on 

This is the s a m e  procedure used in the calculation of n. 
For  the particular path used in the computation, we desire the probability that i t s  metr ic  

This is the intersection of the events that the remains above T1(P ) at depths P ,  P + 1,. . . , L. 
metr ic  is above T1(P) a t  each depth individually. 

events is upper bounded by the probability of any one of the composite events. 
ability that an incorrect path is above T‘* at depth k decreases  with increasing k, we choose a s  
the event in this bound the one corresponding to depth L t W, where L is the depth of the t r e e  

and W is the number of observations remaining after the las t  node has been reached. Conse- 

quently, 

However, the probability of an intersection of 

Since the prob- 

(64a) 
Q t  < p:: L-P-I 

wtL-p  [T1(P)l * ( D -  1 ) D  , 
where P&tL-P [T1(P)] is the probability that a particular path, composed of W t L - P incorrect 

noise-free data points differing from the correct  noise-free data points by 6 ,  remains above 

T1(P). If w e  recall that P&tL-P (T) increases with decreasing T, we can eliminate T1(P ) by 
the inequality 

P&tL-a [T1(P)l ,< PGtL-! (-To) . (64b) 

But we have bounded PktL-! (T) in’Sec. 111-D. Thus, from Eqs. (141, (25),  and (64b) 

< y Z V \ ’ t L - P ( t ) e x p { t [ ( W t L - P ) R + T o ] }  . (65) 

We now turn to  QP-, the probability that the correct  path falls below T I  and that some in- 
correct  path starting at  depth P falls  at  most To below the smallest  value to which the correct  
path falls .  

the correct  path falls  below T while some incorrect path remains above T - To, that is 

This quantity is bounded by the sum over T of the conditional probability QP-(T) that 

Again we consider there  a r e  (D - 1) DL-‘ -i incorrect ‘ paths with lower probabilities than 

those on a particular incorrect path, and again we assume that the noise-free data points on this 
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'. . particular path differ f rom those on the correct path by 6 at a l l  t ime intervals. 
reasons used ear l ier ,  

By the same 

where the summation is a bound to  the probability that the correct path falls below T for  some 

depth beyond P and the particular incorrect path remains above T - T for a l l  depths beyond P. 
__ 

0 -  
Finally, we can employ the Chernoff bound to the summand obtained in See. 111-D. From 

Eqs. (67), (21), and (271, 

L tW-P  
yi(k' Ltw-p) ( r , t )  exp[-rT - t ( T  - To)] L-P - 1 

Qp-(T) ,< (D - 1 ) D  
k= 1 

LtW-P  

(t ) 
L-!-I k LtW-8 -k 4 (D-  1 ) D  c Y 3  ( r . t )  Y2 

k= 1 

x exp{r(kR - T )  t t [ (L  + W - P - k) R - T + To]} . 

In the next section, we consider these sums 

D. Carrying Out the Sums 

The resul ts  of this section can be summarized by the two inequalities. F rom Eqs. (61), 

(64), and (65), w e  obtain 

Q + i  c ( D - I I D  y2 (t)  exp{t [ ( W  + L -  P )  R + To]} , t (69) 
L-P -1 WtL-P  

!=I 

and, from Eqs. (62), (66), and (68), we conclude that 

L *  L+W-P 

(t ) W t L - I  -k 
Q-< 2 (D-  I)DL-'-' 1 u l ( r , t )  y2  

I = 1  j=O k= 1 

xexp{r(kR t jTo) t t [ ( W  t L - I  - k ) R  + (j + 2) To]> , t 3 0 .  r , < O  (70)  

where we have eliminated T I  by using instead 0 o r  -T 

Amending these resul ts  with one expressed in Eq. ( 3 0 ) ,  we obtain 

whichever provided an upper bound 
0' 

L 

(7 1) Qt< ( D -  l)DL-'-' exp{(W t L - P )  [z 1 p2(2t) + tR1 + tTo} , t 3 0  
P = l  

t ( j  t 2) tTo) , t >,O, r <  0 
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These sums may be carr ied out with a single value for r and t ,  but a better result  is achieved . 
if an attempt is made to choose values closer t o  the optimum values for each t e r m  in the same 

manner a s  in See. 111. 

We consider Qt first .  Recalling that 

1 P(t) = 7 p2(2t) + tR + 1nD 

and letting m = W t L - P ,  Eq. ( 7 1 )  can be rewritten 

WtL-1 
( D - l )  exp[mp(t)  + tTo] , t 3 0  . 

m=W 

The variable t is a function of m and should be chosen according to 

TO p ' ( t )  = - 

(73) 

(74) 

for each value of the index. 

necessarily. 
behavior with W, To/m in Eq. (74) approaches zero.  

equal to t l .  

However, such a procedure would complicate the summations un- 

Instead, we note that for large W, and w e  a r e  chiefly interested in the exponential 

Hence t becomes essentially constant and 
Thus the s u m  can be carr ied out for t = t l  to obtain 

Turning now to Q-, we apply a fairly loose bounding technique for the sake of simplicity. 
We remark, however, that the two-value method used in a l l  previous calculations could be ap- 

plied instead, but owing to the tr iple sum to be performed and the fact that the index at which 

the approximation changes can fall outside the summation l imits a s  well a s  inside, the result  

rapidly becomes cumbersome. 

Recalling that 

1 
cy (r)  = 7 pI  (2r )  t r R  

and 

1 P ( t )  = 7 p2(2t) + tR t 1nD 

and letting m = L - e ,  we rewrite the bound to Q- of Eq. (72), 

00 L-I  W t m  
D - I  

Q-,< ~ w + i  c c e x p [ k a ( r )  t j rTo + (W t m) P(t) + ( j  t 2 )  tTol 
j=O m=O k = l  

[Eq. (3911 

for t >, 0 and r <  0. 

Noting first that the choice of r depends only on k and j while the choice of t depends on 

m and j, we  consider choosing both these parameters  for a fixed j. 
could be chosen f o r  each value of k and j according to 

The optimum value of r 

(77a) 
TO 

@'(I) = - j  - . k 
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However, this would make the analysis very complex. 
and optimize the result  over this parameter.  

value of m and j according to 

Instead, we  choose a single value of r 
Similarly, a different t could be chosen for  each 

-(j + 2)  To 
W + m  P'( t )  = 

Again this leads to unmanageable detail. 

grows without bound a s  the sum on j proceeds. 

with a sma l l  value of j and set  t = 0 fo r  the remaining te rms .  

W e  note that the exponent proportional to t in Eq. (76) 
Therefore, we choose one value of t in t e r m s  

W e  now note that when a ( r )  is negative, the dominant t e r m  in the sum on k is that cor re-  
sponding to k = 1 and that the dominant t e r m  in the sum on m is that corresponding to m = 0.  

Thus Eq. (76) can be bounded to obtain 

(0 L - I  
D -  2 (W + m) e x p [ a ( r )  + j rTo + WB(t) + (j  + 2 )  tTo] 

j=O m=O 

m 

exp[a( r )  + j rTo + Wp(t) + (j + 2 )  tTo] . - L(2W + L - 1) (D - i) 
2DW+ I 

j = O  

Thus the exponential behavior with respect to the ta i l  length W is controlled by B ( t )  alone. 

Since P ( t )  is a minimum for  t = t l ,  we choose t according to 

Therefore,  f rom Eqs. (78a) and (78b), 

(79) I m 

+ 2 e x p [ a ( r )  + j r T o +  W InD] . 
j=jo 

We change from t = t i  to  t = 0 at  the t e r m  f o r  which the second value of t gives a smaller  

value than the f i rs t .  This occurs for  

The first summation in the braces  of Eq. (79) can be bounded by the product of the number 

of t e r m s  and the largest  t e rm.  

two cases  which must be considered separately. 

If this bound is employed, the sign of the sum r + t l  delineates 

Thus, f rom Eq. (79) and the relationship 

m 
JO 

I - x  ' 



w e  obtain for r t t l  > 0 

L(2W t L - 1) (D - 1) 
e x p [ a ( r )  t wP(t l )  t 2tlTo t j o ( r  t t i )  To] 

2DWt1 
Q- d 

Wr 

I exp[cY(r) t W 1nD t jorTo] 
t 

I - e  

L(2w - ( D -  a ( r )  + t lTo - rT t - [ lnD -P(t ,)]  
O t l  < 2D 

a ( r )  - 2rTo t [InD - P(t,)] 
1 t 

I - e  

for any r,< 0, and if r t t i <  0 

L(2W t L - 1) (D - 1) exp{a(r)  + 2t,To - W [InD - P(t,)l) Q- ,< 2D 

for  any r <  0. 

In the bound to Q-, the chief interest  is the part of the exponent proportional to W, the 

length of the tail. When r t t > 0, the coefficient of W is given by 

[lnD - P(t,)l 

1 

t 1 

but when r t t i  < 0, the bound has  two t e r m s  each with a different coefficient. 

however, r / t  

In this case,  

< -1 so that the coefficient 1 

[ lnD - P(t,)l 

is the dominant one. 

The choice of r must now be made. Since we required o ( r )  to be nonpositive in the bounding 

process,  and since the best exponent is obtained when r is a s  negative a s  possible, we choose 

r = r With these bounds on Qt and Q-, we can proceed to  the final step. 
t 0' 

The bounds to Q and Q-, when summed, give a bound to  P the probability of reaching the e' 
end of the t r e e  on a path other than the correct  one. 

sions, we cannot discuss them in general. 

ponent a s  a function of the various parameters ,  and then discuss i t s  behavior for this important 

case. 

Because of the complexity of the expres- 

For Gaussian noise, however, we can plot the ex- 

E. Gaussian Noise 

Using the moment generating functions found under the differential bias assumption in 

Sec. 111. we can consider in detail the e r r o r  probability for Gaussian noise. 
a r e  examined, it becomes clear  that P 
beyond the last node of the t r ee .  

If the expressions 

decreases  exponentially with W, the length of the tail  e 
This is due to  the fact  that at  ea r l i e r  depths, the number of 
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alternatives is growing exponentially. 

a s  the process  continues do not contribute to  lowering the e r r o r  probability. 
Thus the additional data points which become available 

Since Pe can be made as small  a s  desired by increasing W, we plot the coefficient of W a s  

For  a fixed value of 6'/u2, the exponent becomes more 

2 2  a function of the bias constant for  various values of the rat io  6 /u . 
first type of e r r o r  is plotted in Fig. 12. 
negative a s  the bias constant decreases .  

bias constant, it is more likely that the metr ic  on an  incorrect path w i l l  remain above the re fer -  
2 2 .  ence metr ic  value fo r  the ent i re  t r e e  duration. A s  6 /u increases ,  the whole curve shifts to  

more negative values. 

The part of Pe due to  the 

This is due to  the fact that for a la rger  value of the 

The remaining portion of P due to e r r o r s  of the second kind has a peaked behavior and is e 
plotted in Fig. 13. 

metric  on the correct  path and on incorrect paths i s  involved. 

correct  path remains above a particular threshold increases  with increasing bias constant and 

the probability that the correct  path falls below the threshold decreases  with increasing bias 

constant, there  a r e  regions in which each situation dominates. 

ponent for  the second type of e r r o r  a t  an intermediate value of the bias constant. 

the exponent for la rge  bias constant is the same for e r r o r s  of the f i r s t  kind a s  for the second 

kind, and that for small  bias constant, e r r o r s  of the second kind predominate. 

of Fig. 13 also display the behavior of the total e r ro r  exponent. 

In the events leading to  e r r o r s  of the second kind, the joint behavior of the 
Since the probability that an in- 

Thus there  is a best e r r o r  ex- 

We note that 

Hence the curves 

Finally, the exponent for the optimum value of the bias constant is plotted in Fig. 14. It is 
seen to have the usual behavior for exponents of this type. 

F. Probability of First Error 

Of al ternate  interest in many measurement problems is the probability of making a first 

e r ro r ,  ra ther  than the probability of making any e r r o r  a t  all.  

Sec. IV-B that the probability of making an e r r o r  at depth f ,  PI is upper bounded according to  

However, it is c lear  f rom 
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Fig. 13. Exponent of Q- and P vs bias constant. 
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where Q +  and QP- a r e  given by Eqs. (64) and (66). Thus the summand of Eq. (71) and the sum on 
j and k in Eq. (72) provide the desired bound to Q, and QP-, respectively. + P 

1’ Thus, af ter  a rearranging of t e r m s  and setting t = t 

Since P(t ) is negative, we see  that the exponent is  better if we consider the location of the first 

e r r o r  closer to  the origin of the t ree .  
i 

Similarly, w e  consider QP-. F r o m  Eq. (76), 

00 WtL-P 

exp[km(r) t j rTo  t (W t L - P )  P( t )  t ( j  + 2 )  tTo] . (84) - D - I  ,,-W 
Q, 4 7 

j=O k = l  

Again w e  note that for a (r)  < 0, the dominant te rm in the sum on k is that corresponding to  

k = 1. Hence 

00 

Qt-4 D-w (W t L - e )  exp[cy(r) + j rTo  + (W + L - 1 )  P(t) + ( j  + 2) tTo] . (85) 

j= 0 

Since the exponential behavior is again controlled by P( t ) ,  we can use the same rationale 

for choosing t .  Thus let  

Thus, f rom Eqs. (85) and (78b), 

j o - l  

- (D - I) (W + L - P ) (r) exp [ j rTo  + (W + L - I 1 B(t + ( j  + 2 )  t 

Dwt 1 I j = O  
Q, < 

I m 

+ exp[jrTo + (W + L - P )  1nDI . 
j=jo 

We choose j according to 
0 

(W t L - P )  [ lnD -P ( t l ) ]  (W t L - P )  [ l n D - P ( t l ) l  
- 2 < j 0 <  - 1  . 

ITo ITo 

Consequently for r t t l  > 0, we obtain from Eqs. (86) and (87)’ 

jo exp[(W + L - P )  B ( t l )  + 2t1To t (jo - 1) (r t t i )  To] I - (D - 1) (W + L - P )  e m ( r )  
Q, 4 Dw+ I 

I exp [ (W t L - I ) In D + jorTo] + 
rTO I - e  
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t [ (1 t 2) l n D - P ( t l )  

t [(I t 2) l n D - P ( t l )  

for any r < 0. 

If, on the other hand, r t t i  ,< 0, we obtain 

Qt-< (D-l)r tL-e)  t1 j o e x p [ ( W t L - P ) P ( t l ) t  2t1To] 
D 

exp[(W t L - I )  1nD t jorTo] 
t 

l - e  

( L - P )  6 7  D- 1 (W t L - e )  exp{-W [ l n D - p ( t l ) -  p(t,)]} 

The exponent in these expressions can now be examined. When r t t l  > 0, the coefficient 

of W is identical in the two t e r m s  and is given by 

When r t t < 0, there  a r e  two different exponents but it is clear  that the more positive, and 
consequently the domina.nt, one is 

1 

L-P  - [ h D  - P(t,) - - w P(tl)l . 

The choice of r can be made a s  in Sec. IV-D, r = ro. 

by the bound to Q,- and that in others it is the same for Qm and QP-. 

the exponent in the bound for Q - 

t Turning at last to P \< Qa t QP-, we note that f o r  some cases  the dominant exponent is given 
Thus we need consider only t e 

P '  
In these bounds, the.main interest  lies in the coefficient of W. By comparing Eqs. (88) and 

(89) with (81) and (82), it is clear  that this coefficient in the expression for  the probability of 

f i r s t  e r r o r  is better than that for the probability of any e r r o r  by a t e r m  that grows linearly with 

the distance of the e r r o r  point f rom the end of the t r ee .  

particular point depends not only on the length of the tail,  but also on the number of output sam-  
ples available beyond this point. 

Thus the probability of an e r r o r  at  a 
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. 
G .  Summary 

The e r r o r  probability for  the sequential measurement technique on a finite t r ee  is bounded 

by a quantity that decreases  exponentially with W. 

Gaussian noise. 

technique discussed in Appendix B. As is evident f rom the curves, there  i s  a degradation in 

e r r o r  probability exponent due to  the sequential procedure? but in the cases  considered here, 

the number of computations is the cr i t ical  issue and for  reasonable values of 6 /u , the sequen- 

t ial  procedure is more attractive f rom this  viewpoint. 

The exponent is calculated in detail for 
This exponent is plotted in  Fig. 14 along with a s imilar  bound for a correlation 

2 2  

V. SIMULATION 

A. Introduction 

In the preceding two sections, we analyzed the sequential algorithm a s  applied to measure-  

ment problems which satisfy two requirements.  

and second, we imposed a somewhat abstract assumption describing the relations among the hy- 

potheses in the output space. This assumption was referred to as  the differential bias assumption. 

Under these assumptions, we demonstrated that the sequential algorithm could be used to  perform 

the measurement with a limited number of computations and with an e r r o r  probability that de- 

c reases  exponentially with the number of observations not dependent on undetermined parameters .  

F i r s t ,  we required that a t r e e  s t ructure  exist 

However, analysis is only to  suggest the operational character is t ics  of a system; in order  

to  tes t  the model, to verify the hypotheses, and to suggest avenues for further analysis, exper- 

iments should be conducted. 

of a simulation program was designed and assembled. 

formed and the resultant data indicated that the mathematical model was a satisfactory repre-  
sentation of the experimental model. 

the resul ts .  

With this view in mind, an experimental "apparatus" in the form 

A number of experiments were per-  

In this section, we describe in detail the experiments and 

B. Simulation Objectives 

There  w e r e  several  specific reasons for the simulation. In the first place, the sequential 

algorithm itself is fairly complex and tracing through the flow chart of Fig. 5 manually is, at 

best, tedious. 

do much to  aid in its understanding and perhaps to suggest methods of improvement. 

A simulation that would graphically indicate the dynamics of the algorithm would 

A second reason for  the simulation was to  test the various assumptions used in the analysis. 

Although the differential bias assumption specifies conditions under which the sequential meas- 

urement technique w i l l  function satisfactorily, it is difficult to  a s ses s ,  in most situations of 

practical interest, whether or not it is satisfied. Of course, an exhaustive computational analy- 

sis could be employed for  a specific measurement situation, but this  would produce little under- 

standing of the general  c lass  of problems to which it applies. 
In addition, although the differential bias assumption is sufficient t o  prove that the sequen- 

t ial  method can be used in measurement problems, it may not be necessary.  

requirements on the differences between output vectors may sti l l  allow the sequential method 
to be employed. For this reason, and for the previous one, the simulation became desirable. 
By using the simulation, we could ascer ta in  whether or not the sequential method could be ap- 

plied to a particular measurement problem. 

tThe error probability for sequential measurement i s  lower bounded by the correlation error probability for the 
last decision. 

That is, weaker 
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Finally, we recal l  the coarseness of the bounds used to obtain the theoretical resul ts .  A 
compilation of data on typical problems would indicate whether these approximations left the e s -  

sential characterist ics of the bounded quantities intact. 

In the bulk of the simulations work, the measurement problem considered was that of geo- 

This problem was chosen f o r  simulation because of a need for improved physical exploration. 

data-processing methods in that area.  
typical of the many measurement situations in which it is difficult t o  a s s e s s  the applicability of 

the algorithm. The model described in Sec. I1 was used, since it displayed the essential  char-  
acter is t ics  of the r ea l  problem without introducing excessive computational difficulties. 

In addition, the geophysical exploration problem seemed 

OUTPUT + - 
FOR HYPOTHESIS DECODER - 

C. Simulation Program 

The author was fortunate to have the opportunity to  ca r ry  out the simulation on a t ime- 
shared IBM 7094 ~ o r n p u t e r . ' ~  These facilities were available at  Project MAC, an M.I.T. r e -  

s ea rch  group directed toward improved man-machine communication. 

action with the computer, it  was possible to observe directly and immediately how the simulator 

was operating, and to modify it a t  once whenever a change was necessary.  

however, the dynamics of the decoder became readily available, thus leading to a significantly 

improved understanding of the decoder 's  operation. 

made the dynamics very clear.  
with the description of the Fano sequential decoding algorithm. 

acterist ic constants (R, To) and the noise variance, one could observe directly the effects of these 

variations on the over-all decoding process.  

off-line experimental work. 

Through on-line inter-  

More important, 

The availability of a graphic display unit 

Examples of the display were  presented in Sec. I1 in connection 

By varying the decoder 's  char-  

Then one could plan intelligently the bulk of the 

The simulation program is divided into several  pa r t s  a s  indicated in Fig. 15, according to 
the various tasks that must be performed. F i r s t ,  al l  parameters  a r e  set  to their  initial values. 

These include various counters to tally the number of computations, the location variable which 

indicates the current location of the decoder, the choice vector i(n) which indicates the alternative 
chosen by the decoder at each node, the threshold value, and the metric.  In addition, the 

REPORT CURRENT STATUS 
WHEN I N  LOOP A 

AND 
AT END OF TREE 

I NI T I  ALlZE 

I S  REQUESTED 
OUTPUT 

I N  STORE? 
- 

YES 
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noise-free data s tore  i s  emptied. 
following quantities a r e  read a s  inputs: 

Then the program is set  up to read data for the next run. The 

The t rue  values for  the unknown parameters.  

The probe signal. 
The t rue  noise-free data sequence resulting from the t rue  parameters  and 
probe signal. Reading this in saves recomputation when the same noise-free 
data a r e  to be retested. 

A set  of independent Gaussian noise samples of zero mean and unit variance. 

The set  of quantization levels. 

The noise variance. 

The bias constant. 

The metr ic  increment. 

A se r i e s  of parameters  governing the frequency of output. 

After these parameters  a r e  read in, the noise is scaled according to the variance. It is 
then added to the t rue  noise-free data sequence to provide noisy data to  the decoder. 

coder i s  then entered. 
The de- 

The decoder operates according to the algorithm of the flow chart discussed in Sec. 11. At 

each stage, it computes an increment to  the metric according to 

( i + l )  v - l  
2 

di = [ C  - (y. - zj) ] J 
j=iv 

where C is a constant, v is the number of intervals along a t r ee  branch, y; is the received noisy 
J 

data at t ime j and z .  is the noise-free output consistent with the current hypothesis and the probe 

signal. 
th (i + 1) . 

J 
The sum i s  over all  those intervals depending on the ith hypothesis, but not on the 

We note that this metr ic  i s  of the form 

for Gaussian noise. For in that case 

R t l n p  (y . l z . )  = R + 
n J  J 

2 
- ‘Yj - Zj )  1 - -  l2 [2a  R - u 1n2nu 2 2 2 - 

2a 

Thus Eqs. (90) and (91) a r e  proportional if 

(92) 
2 2 C = u (2R - ln2na ) . 

Consequently, the requirement that R be greater  than the noise entropy introduced in 

Sec. 111-H 

R > H ( N )  

o r  
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1 2 R > 2 In (27rea ) 

1 1  2 
2 2  = - t - ln27ra 

reduces to 
2 C > a  . (93)  

This is to be expected since C - a' is the expected value of the metr ic  on the correct  path and 

the operation of the decoder presupposes this to be positive. 
The hypothesized noise-free output values {y .} a r e  computed according to a subprogram 

J 
which is changed with the measurement problem. Usually the {y.} a r e  t ime consuming to com- 

pute. It is therefore desirable to s to re  them until it no longer appears that they w i l l  be needed. 
Then they can be discarded. In the simulation program discussed here,  a l ist  s t ructure  tech- 

nique is used to s to re  the b.} in a manner that makes their  recal l  t ime short  but does not r e -  

quire rearrangement of data in the s to re  when items a r e  to be discarded. 

discussed in detail in Sec. V-D. 

.I 

J 
This technique is 

Finally, provision is made to output the decoder 's  conditions a t  a selected frequency of pas- 

sage through loop A. 

an oscillographic form displaying the metric values along those branches investigated by the de- 

coder. 

algorithm. 

This output is in either a printed form giving the current hypothesis o r  in 

Photographs of this display were presented in Fig. 6 to i l lustrate the operation of the 

D. Hypothesis Storage 

Because of the computation t ime necessary in many measurement problems to compute the 

noise-free output resulting from a particular hypothesis and probe signal, it is worthwhile to 

consider techniques of storing these quantities. 

and small  bookkeeping cost with respect to t ime and storage.  

A satisfactory method must permit rapid access  

Several  obvious techniques present themselves. F i r s t ,  a storage location could be provided 

for each possible composite hypothesis. 

makes this procedure absurd because of the huge storage required. 

The multidimensional aspect of the hypothesis vector 

Second, a storage location could be provided for a l l  hypotheses having a common first  part, 
t Thus but differing in the tail.  This method would require D locations if  the ta i l  is of length t .  

the number of required locations remains fixed, a s  the decoder advances further into the t ree .  

However, ca re  must be taken in the design of the storage to permit rapid access  to the informa- 

tion and to  avoid excessive t ime spent in moving the data within the s to re  a s  the decoder advances. 
The method chosen for the simulation is of this type, but once the method is described, a 

third method can be suggested which permits the length of the tail  t o  vary in a desirable manner. 

Before continuing, it is necessary to say a few words about l ist  s t ructures .  

A list in a computer is a group of storage locations which a r e  tied together by means of 
secondary locations w e  shall  refer  to a s  links. 

other members of the l ist .  
address  of link B, and link B contains that of link C, etc.  

a r e  thus t ied together by the links. 

These links contain the machine addresses  of - 
Table I is an example of a three-element list.  Link A contains the 

NA, NB, and NC, entries on the l ist ,  

If link A is tagged in some way to  be the designated f i r s t  



~ ~~ 

Machine 
Address 

471 4 

471 5 

61 02 

61 03 

7452 

7453 

TABLE I 

A SIMPLE ORDERED LIST 

Symbolic Name 

Link C 

List element C 

Link A 

List  element A 

Link 6 

List element B 

Contents 

OOO 

NC 

7452 

NA 

471 4 

NB 

element of the list, w e  can consider the list in the table a s  an ordered list,  with the links de- 

tailing the order  A, B, C. 
A list s t ructure  develops if one of the members of a list is the name of a second l i s t ,  known 

a s  a sublist of the f i r s t .  

sublists of other l ists ,  etc. 

The process may, of course, continue indefinitely, with sublists on 

With these preliminary definitions, we can describe the storage technique used in the simu- 

lation program. 
When the node l ist  is f i r s t  created, it contains 2D l ist  elements, but an additional element is 

added whenever one of the branches leaving this node is t r ied  by the decoder. Of the original 

list elements, the odd-numbered ones contain the hypothesized parameter  values for the node 

and the even-numbered ones contain the noise-free output values. 

put values a r e  contained in the original even-numbered l ist  elements will become apparent when 

the l ist  s t ructure  is indicated. 

likelihood on the basis  of the data. 

Each node which the decoder considers is s tored a s  a separate  ordered list.  

Exactly which noise-free out- 

The parameter  values of the l ist  a r e  ordered according to  their  

Once the decoder chooses a parameter a t  a node, it moves to  the next node in the t r ee  and 

The name of this l i s t  is entered on the list corresponding to  the pre-  creates  a new list for  it.  
vious node, two entr ies  below the chosen parameter value. 

tu re  of sublists, each corresponding to a node i n  the t ree .  

particular node to  be reached, one must s ta r t  at the main list and then proceed further to  those 

Thus the main list has a t r e e  s t ruc-  

For the sublist corresponding to  a 
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(a) Tree structure. 

2 i C 

-+- 
3 F D 

' 6  

z 

(b) Corresponding list structure. 

Notes: ( 1 )  24 i s  the noise-free output resulting from alternative 1 
for the first parameter and alternative 2 for the second 
param e ter . 

(2) At node D, the second alternative i s  more Iikelythan 
the first. 

Fig. 16. List structure. 

successive sublists designated by the l ist  names in the l ist  structure.  

t ra ted in Fig. 16. 

The s t ructure  is illus- 

To  recover a noise-free output value f rom the l ist  structure,  one proceeds through the s t ruc -  

t u re  choosing successive l i s t s  to visit on the basis  of the l ist  names that follow the hypothesized 

parameters  on each sublist. The l ist  element below the hypothesized parameter  on the l ist  cor-  

responding to the node of interest is the desired output value. 

of storage sounds complex, it is only conceptually more involved than the usual methods. 

important feature is that a storage word containing the machine address  of the link belonging to 

the current  hypothesis needs to be interrogated in order  to determine the current decoder posi- 

tion and the data relevant to it. 
stored in the links a s  the decoder progresses.  

ture,  only a few links need be taken to reach any l ist  that corresponds to a node Qf interest  to 

the decoder. 

Although the l ist  s t ructure  method 

The 

This storage word is then modified according to the information 

Because of the tree-like nature of the l ist  s t ruc-  

When one decides to  remove a node from the s tore ,  one must delete only the corresponding 

l ist  name from lists on which it appears and then inform the bookkeeper that the extra l ist  ele- 

ments used in the l i s t ' s  formation a r e  now available for other l i s t s  yet to be generated. 
The removal of an entry in the l ist  s t ructure  is governed, in the simulation program, by a 

simple but not optimum technique. Once the decoder reaches a fixed depth, say t ,  beyond a 
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node, all superfluous nodes prior to t nodes from the end of the t r e e  a r e  removed from the s t ruc-  
ture .  Hence the required storage remains constant. 

t We note, however, that only a few of the D hypotheses in the tail  will be t r ied;  therefore, 
keeping D locations available in storage i s  wasteful of space. A better technique would consist 

of keeping the storage s ize  fixed at some convenient level, and then removing early nodes from 
t the s tore  when, and only when, an overflow occurs. 

storage of nodes at depths ear l ie r  than t before the end of the t r ee  

Coding the l ist  manipulations was greatly simplified by the use of the Symmetric List Proc-  

e s so r  1 a n g ~ a g e . I ~  This consists of a se t  of FORTRAN subroutines which automatically establish 

the links and extract information from the l ist  s t ructure  a s  w e l l  a s  performing many other book- 

keeping tasks .  

t 

Hence a storage s ize  of D would permit 

The reader  i s  re fe r red  to Ref. 14 for further information on the system. 

With these comments on the simulation program, we proceed to  a discussion of the simu- 

lation itself. 

E. Simulation Experiments 

A s  discussed in Sec. 11-E, a simplified model of the geophysical exploration problem was 

chosen to  provide a measurement situation for  testing the theoretical resul ts  by simulation. This 
model i s  described in that section. 

In the simulation itself, the t rue  impedance levels were chosen randomly in such a manner 

That i s ,  a layer four units thick would be mod- 

Thus a fairly realistic fit could be made to  
a s  to represent  layers  of various thicknesses. 

eled by four equal, consecutive impedance values. 

many geological situations that involved only two materials. 

The input signal was chosen, at f i r s t ,  to  be a random sequence of pulses, but it soon became 

apparent that the largest possible signal-to-noise ratio should be provided to make the f i r s t  es- 
timate of an impedance value and thus a single pulse  of maximum available energy is preferable. 

Only if  there  i s  a peak power limitation should an extended input be used. 

For the given t rue  parameter  set  and the input signal, it i s  possible to  compute the t rue-  

observed noise-free data. 

independent random samples.  

ples by the standard deviation. 

was available upon which the decoder could operate. 

set of impedance values by varying for each the noise variance a', the bias constant C, and the 

threshold increment To. 
in the flow chart of Fig. 5 was tallied to permit a progress  report a t  any specified frequency. 

Provision was made to  halt the measurement after a fixed number of passages through loop A. 
A s  we shall see  in the next section, this possibility for  termination w i l l  enter into the resu l t s  

of the simulation study. 

This was done and noise was added f rom a se t  of Gaussian-distributed 

The noise level was varied by scaling a set  of unit variance sam- 

Once this addition was performed, a set  of observed samples 

The program was organized to perform a number of sequential measurements on the same 

In addition, the number of t imes the decoder passed through loop A 

To be definite, we shall define an experiment by using the simulator a s  an attempt to  decode 

all unknown impedance values in a geophysical model that has a particular set  of t rue  quantized 

impedance values, a particular probe signal, a particular set of noise samples of variance u , 
and particular values for the parameters  C and To. 

conducted, but the total number was,  of course, a minute fraction of those possible. The choice 

of which experiments to perform was governed to a great degree by experience gained during the 

2 

A great many experiments of this type were 
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Fig. 17. Number of computations vs bias (simulated). 
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on-line portion of the experimentation during which few actual data were obtained. 
of this experience. it was possible to  choose a set of experiments that would be reasonable in 

number yet  meaningful in result. 

On the basis 

A s  mentioned ear l ie r ,  the t rue  impedance values were chosen to  suggest a layered s t ructure .  

Three different se t s  of 32 values were employed in the experimentation, each displaying a dif- 
ferent degree of randomness. However, in choosing the values themselves, no conscious pattern 

was used. 
each of these sets w i l l  be discussed in more detail la ter .  

The intent was to  represent typical geological environments. The character is t ics  of 

The probe signal was a single pulse of amplitude 5.567. This particular value a rose  from 
a desire  t o  compare the single-pulse resul ts  with those obtained for  a sequence of 31 unit pulses 

with good autocorrelation function. Although no complete data were taken, the improvement ob- 

tained by using the single pulse was immediately apparent. 

IBM 7094 library.'' Only a few sequences of noise samples were used in the tes ts ,  and the noise 

level was varied by scaling the samples according to  the standard deviation. 
permitted an evaluation of the effect of changing a parameter  of the decoding process without con- 

cern  for variation in the noise sequences, and without using the alternative of Monte Carlo opera- 

tion to  average the noise effects. 

samples did not affect the data significantly. 

The noise samples were obtained from a Gaussian pseudo-noise generator available in the 

This procedure 

In general, the change to a different basic sequence of noise 

2 The noise variance u was varied a great deal in the experiments. It is important to  note 

Thus, when one considers that its value was measured with respect to an input pulse amplitude. 

to  what degree the noise obstructs the observations, a direct comparison of the noise variance 

with the effect under scrutiny is necessary.  For example, if one is trying to measure an effect 

that appears  in the fourth decimal place, it would be difficult to  observe if the noise had a vari- 

ance of and a standard deviation of 

- 

The threshold increment T was varied along with C ,  the bias constant, and was always 
0 

set equal t o  C / 2 .  

affect the resul ts  significantly, unless it was chosen too small. 
port of this  view later .  

From the on-line experimentation, it was evident that T variations did not 
0 

W e  shall see  some data in sup- 

2 Finally, the bias constant C was varied considerably. Since the rat io  C/O must exceed 

unity for the average metr ic  value along the correct path to be positive, it was varied from that 

level by two orders  of magnitude. 

outcome of an experiment. 

We shall see  that i ts  choice was important in determining the 

Thus the main variations in the experimentation were of the noise variance u2 and the bias 

constant C .  
curves of the same form a s  those derived theoretically in Sec. 111. 

The resul ts  of the experiments could then be presented a s  a set  of experimental 

F. Simulation Results 

Figure 17(a-c) presents  the resul ts  of the simulated measurement. Each point on these 

curves indicates the number of computations required to  estimate a complete se t  of 32 param- 
e t e r s  with a specified noise variance u , threshold increment To, and bias constant C. All 

points thus plotted in each curve a r e  f o r  the particular se t  of 32 quantized impedance values 

listed in Table 11. A s  becomes c lear  f rom an  examination of the figures, the simulated curves 

a r e  s imi la r  in form to those derived theoretically, but vary distinctly among themselves in the 
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Depth 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

TABLE II 

PARAMETER VALUES FOR SIMULATION 

Fig. 17(a) 

1 .o  
1 .o  
1 .o 
0.1 

0.1 

0.1 

1.0 

1.0 

1.0 

0.1 

0.1 

0.1 

0.1 

0.1 

0.1 

0.1 

0.1 

1.0 

1.0 

1.0 

1.0 

1.0 

0.1 

0.1 

0.1 

1.0 

1 .o 
1 .o 
1.0 

1.0 

1.0 

1 .o 

Parameter Set For 

Fig. 17(b) 

1.0 

1.0 

0.1 

0.1 

0.1 

0.1 

1 .o  
0.1 

0.1 

0.1 

1 .o 
1.0 

1.0 

1 .o 
1 .o 
1.0 

0.1 

0.1 

1.0 

1 .o  
1.0 

1.0 

1.0 

0.1 

0.1 

1.0 

1.0 

0.1 

0.1 

0.1 

0.1 

1.0 

Fig. 17(c) 

1.0 

0.1 

1.0 

1.0 

1.0 

1.0 

0.1 

0.1 

1.0 

1 .o 
0.1 

1 .o 
0.1 

0.1 

1.0 

0.1 

0.1 

1.0 

1 .o  
1.0 

0.1 

0.1 

1 .o 
0.1 

0.1 

1 .o 
0.1 

1.0 

0.1 

0.1 

0.1 

1 .o 
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noise variance value used to  produce each separate curve. 

fact that a distinctly different differential bias parameter 6 obtains for each se t  of parameter 
values. 

W e  shall s ee  that this i s  due to the 

We note that there a r e  four types of points on these curves. F i r s t ,  there  a r e  those co r re -  
sponding to a correct estimate of the complete parameter set; these a r e  plotted along the curves. 

Second, there  a r e  those corresponding to an incorrect estimate of one o r  more parameters;  
these a r e  plotted at the top of the graph. 

placed on the number of computations. 

putations and t r i e s  the correct set  of parameters, and this set  has the maximum metric,  the 

decoder has in effect been successful, although it did not satisfy i ts  internal constraints. 

a point is plotted at 3 = 200, the maximum number of computations permitted. 

does not t ry  the correct  s e t  before reaching the computational limit, an e r r o r  is made. 
point i s  a lso plotted at the top of the graph. 

this did not occur in the simulation. 

some others and one of these incorrect sets  has the highest metric, the decoder will e r r .  
ever,  we note that any unbiased estimation procedure w i l l  also e r r ,  since the received signal 
vector is no longer closest to  the correct  noise-free vector in the output space. 

The third and fourth types a r i s e  because of the limit 

If the decoder performs this maximum number of com- 

Such 

If the decoder 

Such a 

It is possible to have a fifth type of point, although 

If the decoder t r i e s  the correct  parameter set  a s  well as 
How- 

This limitation on the number of computations was not the only special condition of the simu- 

lation. 
cision. 
became apparent. 

the bias constant was also set  at a low level. 

rect  branch would be several  o rde r s  of magnitude larger  than the total metric value. 

an incorrect branch was tested, the threshold would be violated. 

t race i ts  steps to return to  the correct path, all precision in the metric would have been lost. 

This difficulty with the computer's precision a rose  also when internally calculated values 

were compared iyith the same  values that have been t ransferred through the computer 's  input- 

output facility. Round-off e r r o r s  brought about a second noise source that proved t o  be l a rge r  

than the additive noise on several  occasions. 

In all our previous discussions. we assumed that the decoder operated with perfect pre- 

Since this did not hold t rue in practice, there  were several  instances in which this effect 
Generally speaking, they occurred when the additive noise level was low and 

In this event, the metric increments on an incor- 
Thus, when 

When the decoder t r ied to re- 

A s  stated ear l ier ,  the data resulting from the simulation a r e  presented in Fig. i7(a-c).  

Some general  comments can be made about them. 

same  over-all shape a s  the theoretical curves. 

tations i s  large because the correct path w i l l  tend to have negative metric increments a s  well 

a s  the incorrect paths. 

be forced back to the origin of the t r ee  by increasingly negative metric values. For  large bias 

constant, the incorrect paths will appear correct for several  branches before a sufficient num- 

ber  of incorrect branches has been t raversed to make the incorrect path have a very negative 

metric increment. Since the decoder w i l l  have to modify several  hypotheses before returning 

to the correct  path, the number of computations to  rectify the e r r o r  w i l l  be large.  

In the f i rs t  place, they a r e  seen to have the 

For  small  bias constant, the number of compu- 

Thus the decoder may never leave the correct path, but it will repeatedly 

An  examination of the variance values on each curve indicates that the number of computa- 
tions decreases  a s  the noise level decreases.  

wise. 
set  of t rue  impedance values. In the next section, we shall  s e e  that this is due to  a marked dif- 

ference in the degree of dissimilarity between the correct  output vector and the set  of incorrect 

output vectors.  

Indeed, it would be surprising if it were other- 

However, we note that the particular noise variance on each curve is different for each 
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Fig. 18. Number of compuiutions vs ratio of threshold increment to bias constant. 
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A few less formal results were obtained from the simulation. Although an attempt was made 
to  analyze the microscopic behavior of the decoder, it did not s eem useful to make any quantitative 

analyses; however, a few qualitative remarks  are in order .  

expected. 
putations required to  correct  a given e r r o r  grew. 
incorrect paths to  increase when the bias i s  large. 

the estimation a f t e r  the correct  hypothesis was tr ied for the f i rs t  t ime decreased a s  the bias 

constant was increased. 
this tends to produce a negative metric even on the correct path. 

large,  this  tendency lessens.  
e r r o r  at  an earlier depth in the t ree .  

Generally, the performance was a s  

A s  the bias constant was increased for  a particular noise level, the number of com- 

This w a s  due to  the tendency of the metric on 

However, the number required to  terminate 

This was due to  the fact that the tail  includes many noise samples and 

As the bias constant becomes 

Finally a s  the noise level increases,  the decoder makes i t s  f i rs t  

Setting the threshold increment T 

tained f rom preliminary simulation work. 

many computations would be necessary to lower the threshold a fixed amount. 

the met r ic  values on incorrect paths, although they decrease,  will not fall below the threshold 

soon enough, causing incorrect paths to  be searched unnecessarily. 

a s e r i e s  of r u n s  was performed for  different values of the ratio T /C. 

in Fig. 18. 

at  the value C/2 was done on the basis of evidence ob- 
0 

Clearly, it should not be chosen too smal l  or else  

If it i s  too large,  

To check this choice of To, 

The results a r e  presented 
0 

It is clear  that the choice of T / C  is not critical. 
0 

. 

G. Discussion of Results 

Unfortunately, it is not possible to  make a direct quantitative comparison of the theoretical 

and experimental results.  This cannot be expected since, in the theoretical work, it w a s  as- 

sumed that the bias introduced by following t h e  incorrect path w a s  independent of depth, whereas 

in the simulated geophysical problem this bias decreases exponentially with depth owing to  the 

multiplicative coupling between layers.  Nevertheless, some qualitative comparisons can be 

made. 
We have already noted that the form of the curves obtained by simulation a r e  s imilar  to 

those obtained theoretically. 

duce a s e t  of curves due to  the dissimilari t ies in t rue impedance values. This dissimilarity 

would be reflected in the value of the differential bias parameter 6 ,  if  it could be computed. 

However, a s  noted ear l ier ,  computation of 6 would require exhaustive effort. 

W e  also remprked on the differences in variance required to  pro- 

A 
Fortunately, a simply calculated quantity 6 indicates the magnitude of the effect one is using 

to originally hypothesize a value for a parameter. 

lating the noise-free output for each alternative at the nodes along the correct path, and then 

taking the difference between the output for the correct alternative and that for the incorrect one. 

Fo r  the particular parameter s e t s  used in the simulation, this calculation was performed. 

result  a s  a function of depth is plotted for each parameter s e t  in Fig. 19. 

This quantity is the value obtained by calcu- 

The 

We can now compare the curves obtained by the simulation with those obtained theoretically. 

F r o m  Fig. 19, w e  observe that the parameter sets used to derive the curves of Fig. 17(a) has a 

lower 6 than those used to  derive the curves of Fig. 17(b), and therefore should be l e s s  difficult 

to estimate.  Indeed, that was the case. In the same way, the parameter  set  used for  Fig. 17(c) 
is predicted to  be more difficult to estimate than either of the other s e t s .  

agreement. 

A 

Again, we note the 

An estimate of the degree to  which the particular parameter s e t s  used in the simulation a r e  
I\ 

typical can be obtained by computing the average value of 6 over the ensemble of parameter  s e t s  

67 



with two impedance values being equally likely. This computation is given in Appendix D and the 
result  for ZA/ZB = 10 is plotted in Fig. 19, along with the result for the specific curves.  We s e e  

that the se t s  used were both better and worse than the average. 

The curves describing the results of the simulation only indicate the experiments that were 

performed with a small  enough noise variance so that the decoder would be successful in correctly 

estimating a l l  32 unknown impedances for some value of the bias constant. 

were also carried out a t  higher noise levels at which the decoder could not successfully hypothe- 

s ize  the 32 values within the 200 computations allowed. 

the number of required computations grew more and more rapidly. 
evidence of the existence of a quantity analogous to RcOmp, a ra te  at  which the number of com- 

putations in communications grows without bound. 

connection with quantization effects, and therefore w i l l  be discussed further in Sec. VI. 

Other experiments 

In fact, a s  the noise level increased, 

Thus we s e e  experimental 

This quantity is particularly important in 

In addition to the results obtained on the decoder’s performance, both quantitatively and 

We shall  discuss this qualitatively, some insight into the geophysical problem was obtained. 

understanding, a s  well a s  the effects of using the sequential algorithm on a nonquantized problem, 

in the next section. 

H.  Summary 

The results of the simulation have borne out the theoretical resul ts  insofar a s  the general  

behavior of the number of computations vs  the bias constant is concerned. 

of resul ts  is difficult because the decreasing amplitude of the effect depends on the unknown 

parameters  in the simulated case.  In view of the over-all character,  however, it seems safe 

to say that the assumptions were reasonable and that the sequential measurement procedure is 

satisfactory on this simplified model of the geophysical layering problem. 

A direct comparison 

VI. QUANTIZATION EFFECTS 

A. Introduction 

In this section, we consider briefly the problems ar is ing from the quantization of the unknown 

parameters .  

quential technique which may be below that obtainable with some other method. 

masking noise a r i s e s  which must be considered along with the additive noise in determining the 

total noise level. 

We shall  s ee  that there  is an upper limit t o  the precision obtainable with the se -  
In addition, a 

B. Computational Cutoff 

In the hypothesis testing done by the sequential algorithm, the differential bias parameter  

6 specified to what degree the various alternatives at a node affected the noise-free output vec- 

to r .  If these alternatives represent a set of quantization steps for a continuous parameter ,  the 

magnitude of 6 i s  a measure of the effect produced at  the output by a change of one quantization 
step. 

The magnitude of 6 is determined partly by the signal energy, partly by the transformation 

introduced by the transducer being measured, and partly by the s ize  of the quantization steps.  
For a fixed available energy, the only one of these i tems which can be varied by the observer 

is the s ize  of the quantization steps. 

It is important to note that the ratio of the available energy to the receiver noise level is not 

sufficient t o  determine the precision. In particular, one must account for distortions which the 
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signal must undergo in the transducer a f t e r  it "picks up'' information about the unknown param- 

eter ,  but before it can be observed. If, for  example, this distortion were a saturation effect, a 
large change in the unknown parameter would be necessary to effect a small  change in the t rans-  

ducer output. 

were  large,  those details in the output needed to determine precisely the unknown parameter 

would be lost in the compression. 
a s  energy and noise level, in determining the precision that i s  possible. 

* 

Thus, even though both the input and output energies, relative to the noise level, 

Consequently, one must consider transducer effects, a s  well 

We saw in both the theoretical and simulation work that when 6 was too small  relative to  
the noise, the decoder no longer efficiently chose the correct hypothesis set. 

tively began an exhaustive search of all  possible hypotheses. 

the rat io  6/u below which the decoder w a s  ineffective. 

and transducer,  this implies that there is a critical quantization step size below which the se- 
quential method cannot be used. 
of the measured parameter,  the noise level, the available energy and the transducer all contrib- 

ute to  a maximum degree of precision that can be obtained. 

Instead, it effec- 

Thus there  was a cri t ical  value of 

For fixed available energy, noise level, 

Since the s ize  of the quantization steps indicates the precision 

It i s  informative to compare this limit with the corresponding limit in the communications 

case.  Sequential decoding was found to be an effective and efficient decoding technique, a s  long 

a s  a particular ra te  Rcomp w a s  not exceeded. If communication at a higher r a t e  was tr ied,  the 
frequency of lengthy searches  became so high that the average number of computations began to  

grow rapidly with constraint length. 

If we now note that the precision of a parameter is the amount of information needed to spec- 

ify it, we see that the precision obtained from a measurement is analogous to the r a t e  of t rans-  

mission in communications. 

and Rcomp 
exhaustive nonsequential search  procedure, t o  measure the unknown parameters to  a higher de- 

g ree  of precision than is possible with a sequential method. 

"rate"  i s  below the maximum rate  o r  channel capacity imposed by the available energy, the noise 

level, and the tranducer characterist ics.  

Thus the cri t ical  size of the quantization steps in measurements 

In addition, w e  note that it may be possible, by using an a r e  analogous quantities. 

This only means that the cri t ical  

C. Masking Noise 

In the preceding section, we observed that the available energy, the noise level, and the 

transducer set  an upper limit to the degree of precision that can be obtained. 

perfect precision leads to an effect which we shall refer  to a s  masking noise. 
The resultant im- 

When the sequential measurement technique i s  used, the kth hypothesis i s  made on the basis  
of a quantity which was derived from the observed data vector and the set  of k - 1 hypotheses 

that has already been made. 

sis. 
not be possible to  compute exactly the reduced data point for  the kth hypothesis. 

that resul ts  will be defined a s  the masking noise and must be considered with the additive noise 

when evaluating the noise level. 

parameters ,  the masking noise w i l l  be small  and w i l l  be dominated by the additive noise. 

precision is low, the masking noise will be the dominant problem. 

early estimates a r e  made affects the e r r o r  probability and number of computations for  la ter  es-  

t imates through the masking noise level. 

Define this quantity as the reduced data point for the kth hypothe- 

Because of the lack of precision in estimating the first k - I unknown parameters,  it will 

The imprecision 

If the precision is sufficiently high in estimating the f i rs t  k - 1 

If the 
Thus the precision with which 
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We note that the masking noise is highly structured, since many dependencies exist among 

Thus it cannot be considered simply as a n  increase in the additive noise level. samples.  

D. Precision in Geophysical Problem 

W e  have noted in the preceding section how the precision at one depth in the decoding t r e e  

will affect the decoder in making estimates at  la ter  depths. W e  also noted in Sec. V that the out- 

put effect of varying an unknown parameter is an exponentially decreasing function of the number 

of previous discontinuities. In this section, w e  discuss the resul ts  of these effects in connection 

with the geophysical problem considered by simulation in Sec. V. 
The limitation in precision discussed in Sec. VI-B led to the definition of a minimum value 

of the ratio 6/u for which the sequential procedure could be used. Since this ratio decreases  

exponentially with depth in the geophysical layering problem, the precision which can be obtained 

(at a fixed noise level) decreases  with depth a s  well. 

should be reduced as one proceeds to deeper levels in the t r ee .  

Thus the number of quantization levels 

The decreasing precision with which the impedance value of an increasingly deep layer  can 

be measured depends not only on the decreasing 6/u ratio, but a lso on the increasing masking 

noise level that ar ises .  
as one measures more and more parameters .  
in the geophysical layering problem. 

the 6/u ra t io  permits. 

hypotheses. 

A s  indicated in the preceding section, the masking noise level increases  

Thus the masking noise level increases  with depth 

For this reason, one should quantize to a s  many levels a s  

Then the masking noise w i l l  be reduced a s  much a s  possible for la ter  

Consequently, because of the decreasing 6/u ratio and the increasing masking noise, we 

see  that the number of quantization levels should be decreased with depth, choosing the number 
at  each depth as small  a s  the 6/u ratio permits.  

with a degree of precision that decreases  with increasing depth. 

Thus we will determine the unknown parameters  

VII. SUMMARY AND RECOMMENDATIONS 

A. Summary 

In this report, the applicability of a sequential measurement technique to a fairly broad 

class of problems was considered and was analyzed both theoretically and experimentally by com- 

puter simulation. Necessary conditions were determined under which the sequential procedure 

could be successfully operated with a limited number of computations, and with an e r r o r  prob- 

ability that decreased exponentially with the number of observations that can be made after the 

last hypothesis. 

measurement problem and in t e r m s  of which the performance could be estimated. 

and IV, curves were derived to indicate upper bounds to  the level of this performance. 

A parameter was defined which could be used to characterize a particular 

In Secs. I11 

Since the value of the performance parameters  is frequently difficult to determine and since 

many approximations were used in obtaining the theoretical results,  it seemed desirable to s im- 

ulate the sequential measurement algorithm that operates on a measurement problem of practical 
interest .  

ulation, it was possible to obtain curves of the same variables that were obtained theoretically, 

and thereby to compare the simulated resul ts  with those calculated. 
to be a favorable one. 

those obtained from the theory and by estimating the performance-dictating parameter  mentioned 

Such a simulation was performed on a geophysical exploration model. F r o m  the s im- 

The comparison seemed 

The curves obtained by experiment were of the same general  form a s  
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above, it was  possible to  make a slightly more specific comparison. 

good agreement between experiment and theory. 
Again, there seems  to  be 

The shortcomings of this study seem to l ie  mainly in the reality of the model. We require 
a situation in which the successive data points are a function of an increasing number of unknown 

parameters  and one in which the separation between possible parameter values, as viewed from 

the output, is clear. 

through computation and simulation indicates that it satisfies these conditions. Thus the se t  of 

problems amenable to  solution by the sequential measurement algorithm considered in this r e -  
port s eems  to  have at least  one member. A detailed study of other measurement problems 

in order  to  formulate them into tree-like representation would be necessary for additional 

applications - 

However, a preliminary investigation of the geophysical exploration problem 

B. Suggestions for Further Research 

Four research  problems seem to follow a s  natural consequences of this work. In the f i rs t  

place, the applicability of the model introduced here for the geophysical exploration problem 

must be considered in greater  detail. Such consideration would undoubtedly involve simulation 
with actual seismic data a s  recorded under field conditions, instead of the highly idealized data 

used in the simulation discussed above. Indeed, the simulator would require additional sophis- 
tication to  account for the many seismic records obtained f rom the usual a r r a y  of geophones and 

to  include a pr ior i  information about the geological structure obtained f rom scattered drillings. 

Only when a complete simulation of this type is attempted would the applicability of the sequen- 

t ia l  method be ascertained. 
The second a r e a  for further work lies in increasing the number of problems to which the 

Indeed, there  are many multidimensional parameter estimation problems algorithm applies. 
of large proportions that a r e  unassailable with the curren%ly used hill-climbing techniques. 

such a problem could be stated so that a t r e e  structure becomes evident, it may well be possible 

that the sequential technique would be applicable. 

If 

Third, the possibility of a form of feedback can be noted. When the sequential algorithm is 

having difficulty, the difficulty is readily apparent. 

and re run  the experiment with new data or he could vary the parameters  of the algorithm. 

like the communication problem, there  i s  no continual data s t r e a m  being received. 

storage problem exists and the processing could be performed in nonreal t ime. 

conditions, flexibility in modifying the algorithm as  it operates is available and this freedom 

could be used to advantage. 

Thus the observer could stop the processing 

Un- 
Thus no 

Under such 

Finally, it appears that a modification to  the algorithm discussed here  should be possible 
to permit specific consideration of parameters  with continuous a pr ior i  distributions. 

distribution is known, and the noise distribution is also known, it is possible to measure the 

degree t o  which a set  of estimates, as a whole, agrees with the data. 

picks the optimum value for  a parameter i n  a sequential procedure, he may not be selecting the 
same value he would obtain by a joint estimation procedure. This notion suggests a coarse  es-  

timate with the incremental, sequential method, followed by a variational correction at  a la ter  
stage, if  the coarse estimate appears correct.  An explicit technique for  such a procedure, .as 

well a s  its analysis, is outside the scope of this research. 

dealing with the sequential techniques suggests that a modification of this type would be possible 

If this -- 

Thus, i f  one incrementally 

However, intuition gained f rom 



and that i ts  implementation would substantially extend the scope of the problems amenable to  a 

sequential measurement algorithm. 

C. Conclusions 

W e  have introduced a measurement technique that was suggested by the sequential decoding 

procedure for  convolutionally encoded messages.  

satisfactory, if several  conditions of a fairly general nature were met. 

plex, measurement problem was considered in detail and it satisfied these conditions. 
that further research on this technique will show that it has applicability in other a r e a s  where 

multidimensional parameter s e t s  a r e  to be measured. 

This method was analyzed and found to be 

One specific, but com- 

It is hoped 
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APPENDIX A 
LEMMAS 

Lemma 1. 

If p ( r )  is the log moment generating function of a random variable m,  p*(t) is that of the 

random variable m*, and p(r, t) is their joint log moment generating function, then 

dr ,  t) ,< + p;(t) 

where p (r) = 1/2 p(2r )  and p:(t) = 1/2 p"(2t) .  
0 

Proof. 

Schwartz inequality, in i ts  most general form, s ta tes  that 

Also ,  

Similarly, 
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Lemma 2. 

Let g(n) be a positive symmetric function of n, a random variable with symmetric probabil- 

Then, i f  I 6,1 >, I 61 1 ,  ity element p(n) dn. Let g(n) be monotone decreasing a s  a function of In1 . 
. E [g(n - 6,)l > E [g(n - 6,)l 

Proof. 

Let G(n) = g(n - hi) - g(n - 6,). By Lemma ,a, G(n) is asymmetric about t a,)/, A = bo. 
I f 6 2 < - 1 6 1 ) ,  6 < 0 ,  a n d w h e n n < 6  

0 0’ 
monotone-decreasing assumption for g(n), G(n) < 0 for  n < 6 o  and G(n) > 0 for  n > h0. 

if 6 2  > 1 6 i ) ,  G(n) > 0 fo r  n < 60, and G(n) < 0 for  n > 60. 

In -6 , )  = ) n - 6 6 1 + ( 6 1 - 6 2 ) )  < l n - 6 1 ) .  Thus, by the  

Similarly, 
There a r e  four cases:  

(1) 6 2  > bll 6 1 > 0  

( 2 )  6, > biI t i 1 < 0  

( 3 )  6 2 < - 1 ~ * 1  61  > o  

(4) 6,,<-1611 d 1 < 0  . 

We consider in detail case (1); the others follow in a s imilar  manner. 

g o  . 
The inequality follows from the fact that p(n) > p(n - 

manipulations are possible because of the symmetry assumption. 

- 6,) for n < (ti1 t and the other 

Lemma 2a. 

If f(x) is a symmetric function of x, f(x) - f(x - 6)  is asymmetric about 6 / 2 .  

Proof. 

By the definition of asymmetry, 

g(x + 6 J  = - g(- x t cia) 

then 



r f(x t 6/2) - f(x + 6/2 - 6)  = f(x + 6/21 - f(x - 6/2) 

= f(-x - 6/2) - f (6 /2  - x) 

= - [f(-x + 6/2) - f(-x - 6/2)] 

= - [f(-x t 6/21 -f(-x + 6/2 -a)]  I 

v 

Q. E. D. 

Lemma 3. 

If f is a continuous function and has a continuous derivative on (a ,  b) and i f  f(b) = 0, f ' (b) > 0, 

and f(a) > 0, then there  exists an x E (a,  b) such that f(x) = 0. 

such that f ' (y) = 0. 

In addition, there  exis ts  a y E (a, b) 

Proof. 

Under the above conditions, there  exists an 6 > 0 such that f ' (b - 6)  > 0 for a l l  6, 0 < 6 < bo. 
0 

Hence f is monotone increasing on (b - 6 , b). 
Since f is continuous, there  exists an x E (a,  b) such that f(x) = 0. 

Thus there  exis ts  a w < b, such that f(w) < 0. 
0 

Rolle's theorem provides the second part. Since f(x) = f(b) there  exists a y E (x, b) such 
that f ' (y) = 0. 
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. APPENDIX B 
LINEAR REGRESSION ANALYSIS 

If the equations expressing the relationship between the undisturbed filter output and the 

f i l ter  components a r e  examined, it becomes clear that the problem can be formulated in t e rms  

Y2N-1 of linear regression theory and that i t s  techniques can be applied directly. 

a r e  2N - 1 independent random variables, al l  having variances m2 and with means given by the 

so-called regression function 

7 Now yl, . . . , 

N 

E [ y i ] = z i =  a . . h .  i = l ,  ..., 2 N - I  (B-1) 
13 J 

j= I 

where the (ail, . . . , a.  IN 
components s. l,. . . , sN. 
hi ,  . . . , hN can be estimated by considering them a s  regression coefficients to  be determined. 

), i = I ,  . . . ,2N - 1 a r e  known vectors  constructed f rom the N input 
If we use normal linear regression analysis techniques, the parameters  

Let 5 .  be an a rb i t ra ry  unbiased linear estimator for hi. Thus 

2N-1 

Ci = 2 0 . .  y. i = 1, ..., N . (B-2) 9 3 
j = l  

The unbiased requirement further implies 

2N- 1 N 

E [Ei] = a.. ajkhk = hi 
1.l 

j=1 k= 1 

which, in turn, cequires that the Q . .  must s a t i s f y  
1.l 

2N- I 

aij ajk = 6ik 
j = l  

(B-3) 

(B-4) 

where dik is the Kronecker delta. If w e  desire  a minimum variance estimator, we must minimize 

2N-g 

with respect to  a.. subject to  Eq. (B-4). 
9 

Using a set of LaGrange multipliers to  include the constraints, 

i = i ,  ..., N 
j = 1, ..., 2N j = l  

N 

k= I 

o r  
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In addition, there is the constraint equation 

2N-1 

c y i j  a jk  = 6ik . 
j = 1  

Thus 

N 

CY.. = C h ika jk  . 
13 

k= 1 

If w e  multiply this result  by and sum over j,  

2N- 1 ZN-1 N 

where 

2N-1 
‘ke = ajk aj[ ’ ( B - 1 0 )  

j = l  

A s  long a s  the (a.  . 

for the hik is given by the matrix equation 

, a .  ) a r e  linearly independent, it is clear  from Eq. ( B - 9 )  that the solution 
11’ IN 

(B-11) 

ik  . -1 
where c Consequently, from Eqs (B-2 ) ,  

( B - 8 ) ,  and (B-11) .  the minimum variance unbiased l inear estimator for hi is the linear combina- 

tion of the samples given by 

is the element in the ith row and kth column of [c.  i k  ] 

2N-1  N 

j = 1  k = l  

2N-1 

= C dij Y j  
j = 1  

where 

N 

ajk ’ 
d . .  = cik 

1.l 
k= 1 

(B-12)  

(B-13)  



To find the variance of this estimate, we substitute Eqs. (B-4), (B-8), and (B-11) into 

Eq. (B-5). 

2N-1  
2 2  var  [si] = 1 aij  u 

j = 1  

ZN-1 N 

2 N - I  N 

= u2 C cik oij ajk 
j = l  k=1 

N 
ik 

= u2 6ik c 
k= 1 

2 ii = u  c 

We may note that in the problem under consideration, 

k.5 j S N  + k - 1  S. J-k+1 

ajk = 1, otherwise . 
Thus Eq. (B-10) becomes 

N+k- 1 

c =  kf ‘j-k+l ‘j-l+1 
j=k 

N 

m= 1 

the autocorrelation function of the ipput signal. Should this be an impulse, 

then 

ckf = i 6 
N kf 

and the weights for the t e r m s  in the l inear regression formula will be 

N 

d. .  = N ‘ikSj-k+l 
1.l 

k= 1 

I 
N J-l+i . = - s .  . 

(B-14) 

( B - 1 5 )  

(B-16) 

(B-17) 

(B-18) 

(B-19) 

It is thus clear  that the minimum variance unbiased l inear estimate for hi is the c r o s s  

correlation of the fi l ter  input with the noisy output given by 



Nti-I  

(B-20) 

The corresponding variance can be computed from Eqs. (B-14) and (B-18) 

If the input does not have an impulse for an autocorrelation function, a modified form of the 

cross  correlation is used. 

quires the inversion of the cik matrix.  

The pertinent coefficients a r e  to be found in Eq. (B-13) which r e -  



c 

. 
APPENDIX C 

WEAKENING THE DIFFERENTIAL BIAS ASSUMPTION 

. 
In this  appendix, we show that the differential bias assumption can be weakened to  a condi- 

tion on the sum of the individual biases, i f  the probability density of the noise has a certain gen- 

e r a l  property. Specifically, w e  assume that pn(n) is upper bounded by a function of the form 
Ae-’Y I n [  where A and a a r e  any positive constants. Then we show that the moment generating 

functions obtained under the differential bias assumption can also be obtained under the more 

general  condition 

for  a l l  k, where 6 is a constant and the { 6 . }  are the differential biases of the incorrect branches 

involved. 

F i r s t ,  from Eq. (13) 

Thus, f rom the hypothesis above, assuming that h i  is positive (the case of 6 .  negative follows 

in a s imi la r  manner),  
1 

- i t t  [ I  - e  a 

tR A1t t  - - Z e  -aKt - .-ff6 ] 
2 le 

ff(1 - t  

t R A l t t  -a6t 
O S t S  I 

“ I  
l < t  

t > o  

for  6 > 0 and the sign of the exponent is reversed if 6 < 0. 

on 16 I is exponential. 

metr ic  on many incorrect branches a s  in Eq. (13), we take the product of the moment generating 

functions. 
exponential in the sum of the magnitude of the corresponding individual biases. 

the bound is of the form 

Thus, in either case, the dependence 

When we consider the moment generating function of the sum of the 

Thus the required moment generating function is bounded by an expression that is 
In particular, 

81 



k 
Thus i f  C l h i l  > k6 f o r  all k, 

i= 1 

as before. 
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. APPENDIX D 
AVERAGE REFLECTION FROM DEPTH N 

In this section, we make a calculation to  indicate roughly the s ize  of the effect one is trying 

In particular, we consider the mag- to  observe in the geophysical model described in Sec. 11-E. 

nitude of a reflection from a discontinuity at depth N. 

result to  a particular sequence of impedance values, we compute the average reflection over 

the ensemble of all  such sequences. In addition, the result is confined to  the initial return, 

since this is the one used to  make the initial decision on an impedance and thus determines 

whether the estimate wi l l  require correction. 

However, in order  not t o  specialize the 

Assume first that each impedance value is chosen independently and that the impedance at 
depth n, Z is ZA o r  ZB with probability one half. 
a r e  four possibilities for discontinuity at depth N: 

Assume also that Z1 = ZA. Then there  n 

The first and the las t  give no reflection, while the other two do so. 
( 3 )  for  reflections. 

We thus consider (2)  and 

Suppose that ZNml = ZA and ZN = ZB. 
N - 3 impedance values to  be chosen at random. 

between them, and thus there  a r e  N - 2 locations for  possible reflection. 

current consideration, Zi  and ZN-l a r e  both ZA. 
B, there  are n transitions back from B to A .  These Zn transitions can be arranged among 
the N - 2 potential transition locations in ( 2n ) ways. Thus the probability of n transitions 

from A t o  B, assuming that Z1 and ZNei a r e  both ZA, is ( 2n ) 
If there  a r e  n A to  B transitions, and n B to A transitions for a signal moving in the 

direction of increasing depth, there  a r e  the same number of each in the direction of decreasing 

depth. Hence the transmission coefficient for  an input pulse along a path to discontinuity a t  

depth N f rom A to B with n other A to  B transitions along the way is 

Since Z l ,  ZNmi, and ZN a r e  determined, there  a r e  
But fo r  K sections there  a r e  K t 1 transitions 

In the case under 

Thus, i f  there  a r e  n transitions from A to 

N - 2  

N - 2  2-(N-3) 

2n T2n 
T = T ~ ~  BA AB 

where TAB is the transmission coefficient for a discontinuity from A to  B, TBA is the same 

quantity for  the reverse  case, and TAB is the reflection coefficient for an A to  B junction. 

Thus, over the ensemhle of impedance value sets, the average transmission coefficient is 

N 7 - 1  
L 

n=O 

for N even. If this sum is carr ied out by using the binomial expansion, 



where r = ZA/ZB . 
similar  manner and give essentially the same result .  

The cases  of N odd and the reversed discontinuity at  depth N follow in a 

Since r is positive, the f i r s t  t e rm in the square brackets is the most significant for large 

Thus the return is exponentially decreasing with N ,  for N large.  N.  
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